Вверху — изображение ромбокубоктаэдра, выполненное на основе рисунков Леонардо да Винчи, приведенное в печатном издании книги «О божественной пропорции» Луки Пачоли (Венеция, 1509). Внизу — деревянная мозаика Фра Джованни да Верона (ок. 1457–1525) для ризницы церкви Санта-Мария-ин-Органо в Вероне.

Позднее, как мы уже указывали, книга «О божественной пропорции» была напечатана (1509). Это издание содержит гравюры, выполненные на основе рисунков Леонардо. Пачоли включил «Книгу о пяти правильных телах» в качестве приложения к этому изданию. В итоге многогранники стали входить в моду среди итальянской знати эпохи Возрождения. Дворяне собирали коллекции многогранников, которые изготавливались в столярных мастерских под присмотром умелых математиков (порой и самого Пачоли).

В инкрустации по дереву также сочеталось искусство перспективы и мода на использование многогранников. Так, стены домов и двери деревянных шкафов часто украшались мозаиками с изображением многогранников, в которых использовался так называемый тромплей, обман зрения: создавалось впечатление, что дверцы шкафов полуоткрыты, а внутри них лежат разные предметы, книги и геометрические фигуры.

В инкрустациях, выполненных Фра Джованни да Верона для ризницы церкви Санта-Мария-ин-Органо в Вероне, очевидно прослеживается влияние рисунков Леонардо из книги «О божественной пропорции». Нет никаких сомнений, что Фра Джованни был знаком с текстом Пачоли.

* * *

СВЯЗЬ МНОГОГРАННИКОВ И ЗОЛОТОГО СЕЧЕНИЯ

Лука Пачоли назвал свою книгу «О божественной пропорции», иными словами «О золотом сечении». Но какова связь между многогранниками и золотым сечением? Продемонстрируем ее на трех иллюстрациях.

Построение прямоугольника золотого сечения.

На первом рисунке показано построение прямоугольника золотого сечения. Нужно построить квадрат ABPQ и провести дугу окружности с центром в точке М, середине стороны ВР, и радиусом, равным длине отрезка MQ. Эта дуга пересечет продолжение стороны ВР в точке С. Полученный прямоугольник ABCD является прямоугольником золотого сечения, то есть отношение его сторон равно золотому сечению:

Кроме того, прямоугольники ABCD и CDQP подобны, поэтому:

Золотое сечение в правильном пятиугольнике.

При построении правильных пяти- и десятиугольника также используется золотое сечение. Соотношения многих сторон и отрезков в пятиугольнике описываются числом Ф (так называемым золотым числом). Рассмотрим некоторые из них:

Перейти на страницу:

Все книги серии Мир математики

Похожие книги