Другое дело, когда лямбда-выражение осуществляет захват переменных, в этом случае мы получаем мощный и гибкий инструмент управления контекстом. Однако использование таких выражений в качестве аргумента вызывает определенные сложности. Связано это с тем, что тип лямбда-выражения является анонимным. Как следствие, имя типа нам неизвестно, и мы не можем просто объявить переменную нужного типа и присвоить ей лямбда-выражение, как это происходит, например, с указателями или классами. Решается указанная проблема с помощью шаблонов, что будет рассмотрено позже в соответствующих главах. Забегая вперед, отметим, что для хранения лямбда-выражений можно объявлять шаблон с параметром – типом лямбда-выражения (п. 4.4.2) либо использовать специальные классы библиотеки STL (п. 4.6.1).
2.5.3. Исполнитель
Исполнитель реализовывается в виде лямбда-выражения, а передача его как аргумента инициатору зависит от способа реализации последнего. Если исполнитель реализован в виде шаблона класса (п. 4.4.2), лямбда-выражение должно присваиваться в конструкторе класса. В случае использования классов STL (п. 4.5.1) лямбда-выражение передается подобно любому другому аргументу. Подробно эти вопросы рассматриваются в разделе 4, посвященном использованию шаблонов.
2.5.4. Синхронный вызов
Инициатор для синхронного вызова с лямбда-выражением реализуется в виде шаблонной функции, параметром шаблона выступает тип аргумента. Подробно этот вопрос рассмотрен в п. 4.2.1.
2.5.5. Преимущества и недостатки
Преимущества и недостатки реализации обратных вызовов с помощью лямбда-выражения приведены в Табл. 6.
Табл. 6. Преимущества и недостатки обратных вызовов с помощью лямбда-выражения
class EventCounter
{
public:
void AddEvent(unsigned int event)
{
callCounter_++;
lastEvent_ = event;
}
private:
unsigned int callCounter_ = 0;
int lastEvent_ = 0;
};
class Executor
{
public:
Executor(EventCounter* counter): counter_(counter)
{
auto lambda = [this](int eventID)
{
//It will be called by initiator
counter_->AddEvent(eventID);
processEvent(eventID);
};
//Setup lambda in initiator
}
private:
EventCounter* counter_;
void processEvent(int eventID) {/*Do something*/}
};
2.6. Итоги
В C++ обратные вызовы могут быть реализованы с помощью следующих конструкций:
• указатель на функцию;
• указатель на статический метод класса;
• указатель на метод-член класса;
• функциональный объект;
• лямбда-выражение.
Каждая реализация имеет свои достоинства и недостатки. Так какую все-таки выбрать? Чтобы ответить на этот вопрос, необходимо выполнить сравнительный анализ.
3. Сравнительный анализ реализаций
3.1. Методологические подходы
3.1.1. Обобщенный алгоритм
Итак, мы рассмотрели различные способы реализации обратных вызовов. Какая из них наилучшим образом подходит для использования в конкретной ситуации? Чтобы ответить на этот вопрос, необходимо сравнить реализации, т. е. требуется сравнительный анализ.
Обобщенный алгоритм сравнительного анализа включает следующие шаги.
1. Выбрать объекты анализа.
2. Определить критерии сравнения.
3. Построить матрицу соответствия, в которой отобразить, насколько объекты анализа соответствуют выбранным критериям.
4. Проанализировать полученные результаты и выбрать объект, наилучшим образом удовлетворяющий совокупности критериев.
Рассмотрим указанные шаги подробнее.
1. Объект анализа – это некая сущность, которая будет подвергаться анализу. В нашем случае такими сущностями выступают реализации обратных вызовов.