Данциг озадачен тем фактом, что великие математики Греции не натолкнулись на это открытие. «Может быть, все дело в том, что греки питали явное презрение к прикладной науке, предоставляя даже обучение своих детей рабам? Но если это и так, то как могло случиться, что нация, давшая нам геометрию и так далеко продвинувшая эту науку, не создала даже элементарной алгебры? Не странно ли также, что алгебра, этот краеугольный камень современной математики, также зародилась в Индии и примерно в одно время с позиционной системой?»
Ответ на этот вопрос подсказывает профессор Хогбен: «Трудность понимания того факта, почему именно индусы сделали это открытие, почему оно не было сделано математиками древности, почему оно выпало на долю практика, становится непреодолимой лишь в том случае, если мы ищем объяснения интеллектуального прогресса в гении немногих одаренных личностей, а не во всех! социальной умственной среде, которая окружает даже самого великого гения. То, что произошло в Индии примерно в начале 2 столетия н. э., случалось и раньше. Может быть, сейчас это совершается в Советской России... Согласиться с этим [с этой истиной] — значит признать, что каждая культура несет в себе семена своей собственной гибели, если она но уделяет образованию народных масс столько же внимания, сколько и образованию исключительно одаренных людей»58.
Мы должны, стало быть, предположить, что этими грандиозными изобретениями мы обязаны не просто минутному просветлению некоего случайного гения, значительно опередившего свою эпоху, но что это был, в сущности, продукт социальной среды и что эти изобретения отвечали некой насущной потребности своего времени. Несомненно, чтобы сделать открытие и удовлетворить потребность эпохи, нужен был гений высшего порядка, но, не будь такой потребности, отсутствовало бы и стремление найти какой-то выход, и даже если бы открытие было сделано, оно было бы забыто или отложено до возникновения более благоприятной обстановки для его использования. Из ранних санскритских математических произведений, видимо, явствует, что такая потребность существовала, ибо в этих книгах обсуждается много проблем, затрагивающих торговлю и социальные отношения и связанных со сложными вычислениями. Там есть проблемы, касающиеся налогообложения, кредита и процентов; проблемы торговых товариществ, меновой торговли, а также обмена и определения пробы золота. Общество стало сложным, и много людей было занято выполнением административных функций и широкой торговлей. Это невозможно было делать без простых методов вычисления.
Принятие в Индии нуля и десятичной системы счисления дало простор разуму для быстрого прогресса в арифметике и алгебре. Происходит ряд открытий: введение дробей, умножение и деление дробей; введение и усовершенствование тройного правила; квадраты и квадратные корни (вместе с символом квадратного корня,
Эти и другие достижения в математике излагаются в книгах видных математиков, живших между 5 и 12 веками н. э. Имеются также и более древние книги (Баудхаяна около 8 века до н. э.; Апастамба и Катьяяна, оба бколо 5 века до н. э.), трактующие геометрические проблемы, особенно касающиеся треугольников, прямоугольников и квадратов. Древнейшая из дошедших до нас книг по алгебре написана знаменитым астрономом Арьабхатой, который родился в 476 году н. э. Он написал эту книгу по астрономии и математике, когда ему было всего двадцать три года. Арьабхата, которого называют иногда изобретателем алгебры, должен был опираться, хотя бы отчасти, на работу своих предшественников. Следующей крупной фигурой в индийской математике был Бхаскара I (522 год н. э.), за ним следует Брахмагупта (628 год н. э.), который был также знаменитым астрономом и изложил законы применения гауньи, или нуля, и сделал другие важные открытия. Далее следует ряд математиков, которые писали по вопросам арифметики и алгебры. Последним крупным математиком был Бхаскара II, который родился в 1114 году н. э. Он написал три книги: по астрономии, алгебре и арифметике. Его книга по арифметике называется «Лилавати», что является странным названием для математического трактата, так как это имя женщины. В книге часто упоминается о молодой девушке, к которой автор обращается со словами «О Лилавати!» и затем разъясняет ей излагаемые проблемы. Полагают, без каких-либо определенных доказательств, что Лилавати была дочерью Бхаскары. Стиль книги ясен и прост и доступен пониманию юношества. Эта книга до сих пор используется, отчасти из-за своего стиля, в санскритских школах.