Основные принципы постулата об измерениях можно вывести интуитивно. Предположим, что фотон в состоянии (1.2) попадает в поляризующий светоделитель (PBS) — оптический элемент, который пропускает горизонтально поляризованный свет, но отражает вертикально поляризованный (рис. 1.2 a). Что произойдет с этим фотоном? Если бы мы имели дело с классической волной (1.1), то сказали бы, что она разделится: часть ее пройдет сквозь PBS, а остальное отразится. Доли энергии, попадающие в прямой и отраженный каналы, были бы пропорциональны соответственно. Но фотон — это наименьшая порция энергии света, и его невозможно поделить на части.

Мы подошли к очевидному противоречию. Мы знаем, с одной стороны, что классическая волна, состоящая из фотонов, делится на части. С другой — что каждый отдельный фотон неделим. Как могут два этих требования выполняться одновременно?

Представляется, что единственный способ разрешить данный парадокс состоит в том, чтобы постулировать, что результат в таком случае будет случайным: фотон пройдет через PBS с вероятностью и отразится с вероятностью Таким образом, если на PBS попадет большое число N фотонов, то численное соотношение пропущенной и отраженной энергий составит как и ожидалось в классическом случае (см. разд. В.2). И при этом ни один индивидуальный фотон не придется делить на части.

Как мы знаем, часть классической волны, проходящая через PBS, является горизонтально поляризованной, т. е. все фотоны, из которых состоит эта волна, находятся в состоянии |H⟩. Аналогично все фотоны отраженной волны находятся в состоянии |V⟩. Но тогда это же должно быть верно и в случае, когда фотоны попадают в PBS по одному. Фотон будет не только случайным образом выбирать свой путь, но также и, вполне в духе Оруэлла, изменять свое состояние, чтобы соответствовать выбранному пути. После PBS состояние фотона в прямом канале станет |H⟩, а в отраженном — |V⟩. Если мы поместим серию дополнительных PBS на пути фотона, прошедшего через первый светоделитель, то фотон пройдет также и через все эти PBS — никаких случайностей больше не будет.

Процесс, который я только что описал, представляет собой измерение состояния поляризации фотона. Чтобы его завершить, поместим по детектору одиночных фотонов (отступление 1.2) в оба выходящих канала PBS. Из этих двух детекторов один сработает («щелкнет» на квантовом жаргоне), снабдив нас информацией о характере поляризации фотона (рис. 1.2 a).

Описанный измерительный прибор предназначен для того, чтобы различать горизонтальную и вертикальную поляризации. Существуют и другие схемы. Например, наклонив PBS на 45°, мы заставим его пропускать состояние |+⟩ и отражать |—⟩, так что, если мы направим на такой PBS фотон в произвольном состоянии |ψ⟩, он пройдет или отразится с вероятностями pr+ = |⟨+|ψ⟩|2 и pr_ = |⟨-|ψ⟩|2 соответственно. Вообще, мы можем сконструировать измерительный прибор, различающий любые два состояния поляризации, при условии что эти состояния ортогональны друг другу.

Теперь мы готовы сформулировать наш постулат.

Отступление 1.2. Как обнаружить фотон?

Детектор фотонов представляет собой устройство, которое преобразует фотон в «щелчок» (click) — макроскопический импульс электрического тока или напряжения. Изготовить столь чувствительное устройство — непростая техническая задача. На рисунке схематично изображен один из современных способов выполнения этой задачи: сверхпроводящий детектор единичных фотонов.

Чувствительным элементом детектора является охлажденный до сверхпроводящего состояния нанопроводник, по которому течет небольшой постоянный ток. Нанопроводник настолько тонок, что при поглощении даже одного фотона он нагревается достаточно, чтобы стать резистивным на части длины. Ток, в соответствии с законом Джоуля — Ленца, начинает нагревать этот участок проводника, еще сильнее разрушая сверхпроводимость вокруг него. Развивается лавинообразный процесс, так что весь нанопроводник на какое-то время становится резистивным. Это сопротивление и дает на концах нанопроводника импульс напряжения, который несложно зарегистрировать.

Перейти на страницу:

Похожие книги