Теория движения Меркурия у Птолемея дает хорошее совпадение с теми наблюдениями, которые использовались в качестве исходных данных, но для всех иных положений ее точность оставляет желать лучшего, и она существенно уступает всем прочим моделям из «Альмагеста».

<p>Модели Птолемея для описания движений планет по широте</p>

До сих пор мы рассматривали планетарные движения так, будто бы они всегда остаются плоскими, однако в действительности это не так: планеты изменяют свою широту достаточно сложным образом. Впрочем, наклоны их орбит к эклиптике невелики, и Птолемей просто пренебрегает ими при вычислении движений по долготе. Такое упрощение действительно вполне допустимо, поскольку сильно упрощает модели и почти не дает ошибки. Однако Птолемей не мог полностью проигнорировать расчет широты, хотя и признавал этот вопрос хлопотным и трудным. Общее решение предполагало пространственное расположение отдельных элементов кинематических моделей, причем различным образом для внешних и внутренних планет.

Рассмотрим сперва модель для внешних планет — Марса, Юпитера и Сатурна. На схеме точка T соответствует центру Земли, а прямая n-s отмечает направление север-юг на эклиптике. Плоскость деферента D наклонена к эклиптике под малым углом α (равен 1° для Марса, 1,5° для Юпитера и 2,5° для Сатурна) и пересекает ее по линии U-U. Центр деферента E удален от Земли на величину эксцентриситета ET, а проекция линия апсид AP на плоскость эклиптики (прямая F-F’) образует с линией n-s угол γ, который и определяет долготу апогея A. Сама линия апсид деферента A-P наклонена к прямой U-U под углом β, который для Марса равен ровно 90°, для Юпитера составляет 70° (наклон на запад), а для Сатурна — 140° (наклон на восток). Одновременно с этим эпицикл ε всегда остается параллелен эклиптике, а линия, соединяющая центр эпицикла C с планетой N оказывается параллельна направлению от Земли T на Солнце S. Впрочем, точность такой модели не удовлетворила Птолемея, и он все же ввел небольшие углы наклона для эпициклов.

Для Меркурия и Венеры пространственная система оказалась несколько иной (не считая того факта, что Меркурий потребовал введения второго подвижного эксцентра). Их деферент D лежит в плоскости эклиптики и его линия апсид A-P образует с линией n-s угол γ, определяя тем самым долготу апогея A. Центр эпицикла C всегда лежит на прямой T-S. За годовой период обращения эпицикла ε на деференте D сам деферент совершает одно малое колебание на оси U-T-U, амплитуда которого составляет ±10′ для Венеры и ±45′ для Меркурия. Причем, когда центр эпицикла C находится в точках K и K’, угол между деферентом и эклиптикой равен 0°, а когда точка C находится в апогее A или перигее P — наклон максимален. Сам эпицикл также не лежит в плоскости деферента, и угол между ними плавно изменяется таким образом, что при прохождении центра эпицикла C через точки A и P в плоскость деферента попадает диаметр эпицикла a-p, тогда как при прохождении центра эпицикла C через точки K и K’ в плоскость деферента попадает диаметр эпицикла k-k’. Меркурий в апогее A находится южнее (ниже) эклиптики, а Венера — севернее.

Несмотря на все использованные геометрические ухищрения, Птолемей оказался вынужден признать, что задача вычисления широт не получила у него достойного разрешения, и точность моделей осталась достаточно низкой. Основная сложность тут состояла в том, что в действительности плоскости планетарных орбит проходят через Солнце, а не через Землю, поэтому все колебания нужно отсчитывать именно от Солнца, но в рамках геоцентрической модели предположить подобное было нереально. Ошибки Птолемея в определении долготы можно было исправить за счет уточнения параметров моделей или введения дополнительных кругов, чем, собственно, и занимались многие астрономы более позднего времени, но вот движения по широте так и не получили никакого внятного объяснения до тех пор, пока Солнце не оказалось перемещено в центр мира. Впрочем, до этого события оставалось еще четырнадцать столетий, на протяжении которых «Альмагест» оставался надежным фундаментом всех астрономических знаний человечества.

Перейти на страницу:

Похожие книги