Однако эти слова нужно понимать также и в связи с общим телесным представлением Платоном всего существующего, в том числе и человека и его тела. Если тело растет, то ясно, что оно растет и в длину, и в ширину, и в высоту. И если человеческое тело с самого начала представляет собою нечто определенное, аналогичное, например, отрезку прямой линии, то ясно, что рост человеческого тела будет постепенным возведением первоначального основания в куб. Рост организма, следовательно, есть возведение его в степень (эта мысль, между прочим, встречается и у немецких идеалистов). Дж. Адам доказывает также и то, что здесь имеются в виду попросту сроки созревания плода во чреве матери, - точно так же, как далее имеется в виду период порождения космоса богом.
Даже и для слова "круговорот" (periodos) Дж. Адам подыскал разные тексты, свидетельствующие о том, что оно относится именно к процессам внутриутробного созревания человека{59}. Однако эта подробность может нас в данном случае и не интересовать. Итак, человеческое рождение есть, как и все на свете, трехмерное тело, определяемое соответствующими числами.
Что касается более подробной характеристики чисел, заполняющих эти три промежутка ("уподобляющих", "расподобляющих", "растущих", "исчезающих"), то очень трудно составить о них какое-либо точное представление, поскольку математически они не обладают достаточной определенностью, а в обывательском смысле тоже не очень понятны. Однако и здесь можно не гнаться за последней ясностью, так как вопрос этот, в конце концов, второстепенный. Тут важно только одно - когда имеется в виду совершенное состояние человека, то есть полное взаимное соответствие его идеальных возможностей и реальных осуществлений, то в результате числового устроения человека и его порождений все оказывается "пропорциональным и взаимосоизмеримым".
Дальше у Платона начинается то, что некоторые исследователи понимают как какую-то шараду или ребус. В значительной мере это так и есть. Во-первых, рассуждая отвлеченно, нельзя понять, зачем понадобились Платону числа 3, 4 и 5. Но здесь, кажется, выход из затруднения намечается потому, что почти все исследователи находят здесь пифагорейский прямоугольный треугольник, в котором один катет 3, другой 4, а гипотенуза 5 (добавим к этому еще и то, что площадь такого треугольника равняется 6). Согласно пифагорейскому учению, треугольник есть первое оформление жизни после простой и неразвернутой точки и после неопределенной, уходящей в бесконечность двоицы. Но что значит "после трех увеличений"? По-гречески стоит здесь tris аух etheis в отношении к pythmen, которое мы перевели как "база". Смотря по тому, как понимать это "увеличение", получаются разные цифры. Но, судя по тому, что рост организма понимался пифагорейцами и Платоном как возведение в степень, здесь как будто бы вероятнее всего возведение в степень, а не другая арифметическая операция, например не умножение на три. В конце концов мы и здесь не стали бы гнаться за последней ясностью. Ведь пифагорейское значение тройки всем хорошо известно. Тут важно только то, что основной жизненный треугольник Платон каким-то образом тоже превращает в тело путем каких-то трех в точности нам не известных операций.
Таким образом Платон, пусть понятно или непонятно, но все же представил нам человеческие порождения в виде некоего трехмерного тела. И вот этот-то числовой геометризм для нас и является самым важным, а детальная характеристика чисел, сюда относящихся, в которой путаются и не могут не путаться комментаторы, может и не очень нас тревожить.
В дальнейшем возникает последний и самый трудный вопрос о двух каких-то "гармониях", которые получаются из этого геометрически числового тела. Одну из них он называет "квадратной", а другую "продолговатой". Собственно говоря, и здесь можно было бы не вникать в подробности, поскольку и без этого ясно, что "квадратную гармонию" Платон понимает как совершенную, определяющую собою устойчивое состояние "идеального общества", а "продолговатую гармонию" понимает как символ гибели идеального государства и идеального человека.
Однако все же посмотрим, о чем тут думали исследователи в течение не менее двух тысячелетий.