В связи с этим можно прибавить, что утверждение Канта о синтетическом свойстве основоначал чистой геометрии также мало основательно. Признавая, что многие из них в действительности суть аналитические суждения, он приводит в доказательство первого мнения лишь то основоположение, что прямая линия есть кратчайшее расстояние между двумя точками. «Именно мое понятие о прямизне не говорит ничего о величине, а только о качестве; понятие кратчайшего привнесено, стало быть, совершенно извне и никаким расчленением не может быть извлечено из понятий прямой линии; следовательно, здесь должно прибегнуть к пособию воззрения, которое делает синтез единственно возможным». Но тут идет речь не о понятии прямого вообще, а о прямой линии, а эта последняя есть уже нечто протяженное, наглядное. Определение же (или, если угодно, понятие) прямой линии состоит, конечно, ни в чем ином, как в том, что она есть только простая линия, т. е. что в своем выходе вне себя (так называемом движении точки) относится только к себе, что в ее протяжении не положено никакого различия определений, никакого отношения к какой-либо точке или линии вне ее: она есть только в себе простое направление. Эта простота есть конечно ее качество, и если по-видимому прямую линию трудно определить аналитически, то единственно вследствие определения простоты или отношения к себе самой и просто потому, что при определении рефлексия прежде всего имеется в виду преимущественно множественность, определение {131}через другое; но просто для себя нисколько не трудно понять это определение простоты протяжения в себе, это отсутствие определения через другое; определение Евклида не содержит в себе ничего, кроме этой простоты. Переход же этого качества в количественное определение (кратчайшей), в котором должен состоять синтез, совершенно аналитический. Линия, как пространственная, есть количество вообще; простейшее, что может быть сказано о количестве, есть наименьшее, и это, высказанное о линии, есть кратчайшее. Геометрия может принять эти определения, как дополнение к определению; но Архимед в своих Книгах о шаре и цилиндре поступил всего целесообразнее, установив определение прямой линии, как аксиому, столь же правильно, как поступил Евклид, поставив в числе аксиом определение, касающееся параллельных линий, так как развитие его, чтобы стать настоящим определением, потребовало бы также не относящихся непосредственно к пространственности, но более отвлеченных качественных определений, каковы в применении к линии простота, равенство направления и т. п. Эти древние сообщили и своим наукам пластический характер, строго ограничивая свое изложение особенностями данного содержания, а потому исключая то, что было бы разнородно ему.
Понятие, которое Кант установил в учении о синтетических суждениях a priori — понятие различного, которое вместе с тем нераздельно, тожественного, которое само по себе есть нераздельное различие, принадлежит к тому, что в его философии есть великого и бессмертного. Правда, воззрению также присуще это понятие, так как последнее есть понятие, как таковое, и все в себе есть понятие, но определения, которые даны в приведенных примерах, не выражают его; напротив, число и счет чисел есть тожество и произведение тожества, которые суть лишь внешний, поверхностный синтез, единство единиц, которые в них не тожественны между собою, но положены лишь как внешние, раздельные для себя; в прямой линии то определение, что она есть кратчайшая между двумя точками, содержит в себе скорее лишь момент отвлеченно тожественного, не основываясь на различении в нем самом.
Я возвращаюсь от этого отступления к самому сложению. Соответствующий ему отрицательный вид счета, вычитание, есть также совершенно аналитическое отделение чисел, которые, как и в сложении, вообще определяются, лишь как неравные одно относительно другого.
2. Ближайшее определение есть равенство чисел, подлежащих нумерации. Вследствие этого равенства, число есть единица, и в нем выступает различие единицы и определенного числа. Умножение имеет задачею сосчитать вместе определенное число таких единиц, которые сами суть определенные числа. При этом безразлично, какое из обоих чисел полагается за единицу, и какое за определенное число, говорим ли мы четырежды три, где четыре есть определенное число, а три — единица, или, наоборот, трижды четыре. Выше уже указано, что первоначальное нахождение произведения совершается посредством простой нумерации, т. е. отсчитывания {132}на пальцах и т. п.; позднее возможность непосредственного получения произведения основывается на собрании таких произведений, на таблице умножения и на выучивании ее наизусть.