Деление есть отрицательный вид счета по тому же определению различия. При этом также безразлично, какой из двух его факторов, делитель или частное, принять за единицу или за определенное число. Делитель принимается за единицу, а частное за определенное число, если задача деления полагается в том, чтобы узнать, сколько раз (определенное число) одно число (единица) содержится в данном числе; наоборот, делитель считается определенным числом, а частное единицею, когда требуется разделить данное число на данное определенное число равных частей и найти величину последних (единицы).

3. Оба числа, которые определяются одно в противоположность другому, как единица и определенное число, как числа, непосредственно противоположны и потому вообще неравны. Дальнейшее равенство есть равенство самых единицы и определенного числа; таким образом заканчивается движение к равенству определений, заключающихся в определении числа. Счисление согласно этому полному равенству есть возведение в степень (отрицательный вид этого счисления — извлечение корня) и именно прежде всего возвышение числа в квадрат, полная определенность счета в себе самом, при которой 1) многие слагаемые числа суть одни и те же и 2) их множество или определенное число само тожественно многократно положенному числу, единице. Более не оказывается никаких определений в понятии числа, которые представляли бы собою различие; не имеет места и дальнейшее приравнивание различия, заключающегося в числе. Возвышение в степени, высшие, чем квадрат, есть формальное продолжение того же процесса, причем отчасти — при четных показателях — происходит лишь повторение возвышения в квадрат, отчасти, при нечетных показателях, вновь выступает неравенство; при формальном же равенстве (напр., прежде всего при кубе) нового фактора как с определенным числом, так и с единицею, он является единицею против числа (квадрат, 3 против 3*3) неравное. Еще более при кубе четырех, где определенное число, 3, указывает на то, сколько раз число, составляющее единицу, множится само на себя, отлично от него. Тут даны определения сами по себе, как существенное различие понятия, определенное число и единица, которые должны быть приравнены для того, чтобы выход из себя вполне возвратился в себя. В только что изложенном заключается далее основание, почему с одной стороны решение уравнений высших степеней должно сводиться к решению квадратных уравнений, а с другой — почему уравнение нечетных степеней определяются лишь формально, и именно если корни рациональны, то последние могут быть найдены не иначе, как при помощи мнимых выражений, представляющих собою противоположность того, что суть и выражают собою корни. Арифметический квадрат, согласно вышесказанному, один содержит в себе простую определенность, вследствие чего уравнения высших формальных степеней должны {133}быть приводимы к нему; подобно тому как в геометрии прямоугольный треугольник содержит в себе простую определенность в себе, выражающуюся в пифагоровой теореме, вследствие чего к ней также приводятся для полного определения все прочие геометрические фигуры.

Подвигающееся вперед, в порядке логически построенного суждения, преподавание излагает учение о степенях прежде учения о пропорциях; последние, правда, примыкают к различию единицы и определенного числа, составляющему определение второго вида счета, но они выступают за пределы единицы непосредственного количества, в котором единица и определенное число суть лишь моменты; дальнейшее определение по нему остается для него самого внешним. Число в отношении не есть уже непосредственное количество; оно имеет свою определенность в опосредовании; количественное отношение будет рассмотрено далее.

О вышеприведенном дальнейшем определении видов счета можно сказать, что оно не есть философствование о них, изложение их внутреннего смысла, так как оно не представляет собою имманентного развития понятия. Но философия должна уметь различать то, что по своей природе есть внешнее само себе содержание, при котором прогресс понятия совершается лишь внешним способом, и моменты которого могут существовать лишь в своеобразной форме их внешности, какова здесь форма равенства и неравенства. Различение сфер, к коим принадлежит определенная форма понятия, т. е. в коих она дана, как существование, служит существенным условием философствования о реальных предметах, дабы внешнее и случайное не было расстроено идеями в своем своеобразии, равно как и эти идеи не были искажены и сделаны формальными через несоответствие содержания. Но эта внешность, в которой моменты понятия являются в том внешнем содержании, в числе, есть здесь соответственная форма; так как они изображают предмет с его рассудочной стороны, и так как они не содержат никакого умозрительного требования и потому являются легкими, то они заслуживают применения в элементарных учебниках.

Перейти на страницу:

Все книги серии Наука Логики

Похожие книги