Математическое бесконечное представляет интерес отчасти вследствие произведенного им расширения математики и великих результатов, которые были достигнуты последнею вследствие его введения в нее; отчасти же оно достойно замечания потому, что этой науке еще не удалось оправдать его употребления посредством понятия (понятия в собственном значении этого слова). Его оправдания сводятся в конце концов на правильность результатов, достигаемых при помощи этого определения, результатов, доказываемых из чуждых ему оснований, а не к установлению ясного понятия о предмете и о приеме, посредством которого достигаются эти результаты, так что даже самый прием признается неправильным.

Это само по себе есть недостаток; такой образ действия ненаучен. Но он приводит также к тому вредному последствию, что математика, поскольку она не знает природы этого своего орудия, не может определить объема своего приложения и предохранить от злоупотреблений последним.

В философском же отношении математическое бесконечное важно тем, что в основе его действительно лежит понятие истинной бесконечности, и что поэтому оно стоит много выше, чем обыкновенно так называемое метафизическое бесконечное, которое предъявляет возражение против первого. Против этих возражений наука математики часто избавляется лишь тем, что она отрицает компетентность метафизики, полагая, что математике нет дела до этой науки, и что она (математика) может не заботиться о понятиях метафизики, если только первая остается последовательною на своей собственной почве. Математика должна рассматривать не то, что истинно по себе, а то, что истинно в ее области. Метафизика не может отрицать или опровергнуть блестящих результатов употребления математического бесконечного при всех своих возражениях против него, математика же не в со{158}стоянии сладить с собственными понятиями метафизики, а следовательно, и с объяснением того образа действий, который делает необходимым употребление бесконечного.

Если бы затруднение, тяготящее математику, было только затруднением понятия вообще, то это затруднение могло бы быть спокойно оставлено в стороне, так как понятие есть нечто большее, чем начертание его существенных определенностей, т. е. рассудочных определений некоторой вещи, а в строгости этих определенностей математика не имеет нужды; ибо она не есть такая наука, которая имеет дело с понятиями своих предметов и образует их содержание через развитие понятия хотя бы путем рассудка. Но в методе ее бесконечности главное противоречие оказывается именно в том своеобразном методе, на котором она основывается вообще, как наука. Ибо исчисление бесконечных позволяет себе и требует способов действия, которые при действиях над конечными величинами математика должна совершенно отвергать, а вместе с тем она обращается со своими бесконечными величинами, как с конечными определенными количествами, и применяет к первым те приемы, которые имеют силу относительно последних; главная особенность в обработке этой науки состоит в том, что к трансцендентным определениям и действиям над ними применяется форма обычного счисления.

При этом разногласии своих приемов математика указывает на то, что результаты, к которым она таким образом приходит, совершенно согласуются с теми, которые получаются при пользовании собственно математическим, геометрическим и аналитическим методом. Но это отчасти касается не всех результатов, и цель введения в науку бесконечности состоит не только в сокращении обычного пути, но в достижении результатов, которые этим путем не могут быть получены. Отчасти же успех приема еще не оправдывает пути самого для себя. Этот прием исчисления бесконечных оказывается пораженным видимостью неточности, так как конечные величины то увеличиваются через присовокупление бесконечно малых величин, и последние отчасти сохраняют значение при дальнейших действиях, отчасти же пренебрегаются. Этот прием представляет собою ту особенность, что, несмотря на допущенную неточность, получается результат не только пригодный и настолько приблизительный, что разница может быть оставлена без внимания, но совершенно точный. При самом же действии, предшествующем результату, нельзя освободиться от представления, что хотя некоторые величины неравны нулю, но они столь незначительны, что их можно оставить без внимания. Но тем, что следует разуметь под математическою определенностью, совершенно исключается различение большей или меньшей точности подобно тому, как в философии может идти речь не о большей или меньшей вероятности, а единственно об истине.

Перейти на страницу:

Все книги серии Наука Логики

Похожие книги