Но если метод и употребление бесконечности и оправдываются их успехом, то все же, несмотря на то, требовать их оправдания не столь излишне, {159}как требовать оправдания существования носа после доказательства права пользоваться им. Ибо для математического познания, поскольку оно научно, существенно доказательство, а по отношению к результату оказывается, что строго математический метод не вполне доказывается успехом, который, сверх того, есть лишь внешнее доказательство.

Представляется заслуживающим труда рассмотреть ближе понятие бесконечного и те замечательные попытки, которые имеют целью оправдать его и устранить затруднения, тяготеющие на методе. Рассмотрение этих оправданий и определений математическо бесконечного, которые я намереваюсь подробнее изложить в этом примечании, бросит вместе с тем и наиболее яркий свет на самую природу истинного понятия и покажет, что предносится в нем и лежит в его основе.

Обычное определение математического бесконечного состоит в том, что оно есть величина, за которой — если она определяется, как бесконечно большая — нет большей величины или — если она определяется, как бесконечно малая — нет меньшей величины, или которая в первом случае более, а во втором — менее какой бы то ни было любой величины. Это определение, правда, не выражает собою истинного понятия, но содержит в себе, как уже было замечено, то же самое противоречие, которое свойственно бесконечному прогрессу; но посмотрим, что в нем содержится в себе. Величина определяется в математике, как то, что может быть увеличиваемо или уменьшаемо, вообще как безразличная граница. Следовательно, поскольку бесконечно большое или бесконечно малое таково, что оно уже не может быть увеличиваемо или уменьшаемо, оно в действительности уже не есть определенное количество (Quantum).

Это есть вывод необходимый и непосредственный. Но та рефлексия, согласно которой определенное количество — а я разумею в этом примечании под определенным количеством вообще то, что оно есть, конечное количество — снято, не должна иметь места и представляет для обычного понимания затруднение, так как определенное количество, поскольку оно бесконечно, должно быть мыслимо, как снятое, как такое, которое не есть определенное количество, и количественная определенность которого, однако, сохраняется.

Если обратиться к тому, как обсуждает это определение Кант[22], то оказывается, что он не находит его согласующимся с тем, что понимается под бесконечным целым. «По обычному понятию такая величина бесконечна, более которой (т. е. более содержащегося в ней множества данных единиц) не может быть никакая другая величина; но никакое множество не может быть наибольшим, так как к нему всегда можно прибавить одну или более единиц. В представлении же бесконечного целого мы не представляем себе, как оно велико, следовательно, его понятие не {160}есть понятие максимума (или минимума), а выражаем этим представлением лишь его отношение к произвольно взятой единице, относительно которой это целое более какого бы то ни было числа. Смотря по тому, более или менее эта единица, и бесконечное более или менее; но бесконечность, поскольку она состоит в отношении к этой данной единице, остается всегда одною и тою же, хотя конечно абсолютная величина целого тем самым совсем не узнается».

Кант порицает признание бесконечного целого за некоторый максимум, за законченное множество данных единиц. Максимум или минимум, как таковой, является всегда определенным количеством, множеством. Таким представлением не может быть отклонен вывод Канта, приводящий к большему или меньшему бесконечному. Вообще поскольку бесконечное представляется как определенное количество, для него сохраняет значение различие большего или меньшего. Но эта критика не касается понятия истинного математического бесконечного, бесконечной разности, так как последняя уже не есть конечное определенное количество.

Перейти на страницу:

Все книги серии Наука Логики

Похожие книги