Можно предпослать здесь то замечание, что при рассмотрении метода дифференциального исчисления сейчас же бросается в глаза, что он изобретен и установлен не ради себя самого; он не только не обоснован для себя, как особый способ аналитического действия, но необходимость опускать члены, получающиеся через развитие функции, несмотря на то, что все это развитие в целом признается относящимся к делу — ибо дело именно состоит в различении развитой функции переменной величины, после придания ей вида двучлена, от первоначальной функции — совершенно, напротив, противоречит всем основоположениям математики. Как потребность в таком образе действия, так и недостающее ему самому в себе оправдание, сейчас же указывают на то, что его источник и основание находятся где-то вне его. Вообще в науке бывают случаи, когда то, что заранее установлено, как элементарное, и из чего выводятся предложения науки, оказывается неочевидным и требующим, напротив, для себя повода и обоснования в том, что вытекает из него. История дифференциального исчисления показывает, что оно имело свое начало в различных так называемых методах касательных, которые представляли собою как бы фокусы; этот образ действия, распространенный и на другие предметы, был возведен затем в сознание и выражен в отвлеченных формулах, которым старались придать значение принципов.

Было показано, что определенность понятия так называемых бесконечно малых есть определенность качественно-количественная, которая ближайшим образом положена, как отношение между определенными количествами, с чем связывается эмпирическая попытка обнаружить эту определенность понятия в тех описаниях или определениях, которые находят в бесконечно малом, поскольку оно признается за бесконечно малую разность или за что-либо другое подобное. Это совершается лишь в интересе отвлеченной определенности понятия, как таковой; дальнейший же вопрос должен состоять в том, как отсюда перейти к математической форме и ее {186)приложению. В конце концов, нужно разработать еще далее теоретическую сторону, определенность понятия, которая сама по себе не окажется бесплодною; затем должно рассмотреть отношение ее к ее приложению, и как в том, так и в другом случае показать, насколько это здесь уместно, что получающиеся общие выводы соответствуют тому, чем занимается дифференциальное исчисление, и тому способу, которым оно пользуется.

Прежде всего следует напомнить о том, что форма, свойственная в математике рассматриваемой теперь определенности понятия, уже более или менее изъяснена. Качественная определенность количественного, во-первых, вообще обнаружена в количественном отношении, но уже при рассмотрении различных так называемых действий счета (ср. соотв. примеч.) было предусмотрено, что подлежащее еще потом в своем месте рассмотрению степенное отношение есть то, в чем число через приравнение моментов своего понятия, единицы и определенного числа, положено, как возвратившееся к себе, и что тем самым в нем содержится момент бесконечности, бытие для себя, т. е. определения самим собою. Ясно выраженная качественная определенность величин присуща поэтому, как также было указано, существенным образом степенным определениям, и так как специфическая особенность дифференциального исчисления состоит в действиях над качественными формами величин, то свойственный ему математический предмет состоит в обращении с формами степеней, и все задачи и их решения, с которыми имеет дело дифференциальное исчисление, показывают, что интерес сосредоточивается в них единственно на разработке степенных определений.

Перейти на страницу:

Все книги серии Наука Логики

Похожие книги