Сродным и однако различным от отожествления разнородных определений оказывается само по себе неопределенное и совершенно безразличное утверждение, будто бесконечно малые части одного и того же целого равны между собою; но примененное к разнородному в себе, т. е. причастному существенной неравномерности количественных определений предмету, оно приводит к существенному противоречию, содержащемуся в высшей механике, которая учит, что в равные, притом бесконечно малые времена, в бесконечно малых частях кривой происходит равномерное движение, как часть такого движения, которое в равные конечные, т. е. существующие части времени {183}проходит конечные, т. е. существующие неравные части кривой, следовательно, движение, которое, как существующее, неравномерно и признается за таковое. Это предложение есть словесное выражение того, что должен означать собою аналитический член, получающийся через вышеупомянутое развитие формулы, хотя неравномерного, но подчиненного некоторому закону движения. Более старые математики старались выразить результаты вновь изобретенного исчисления бесконечных, которое притом всегда имело дело с конкретными предметами, в словах и предложениях и изобразить их геометрически, главным образом, для того, чтобы употреблять их для обычного способа доказательства теорем. Члены математической формулы, в которую анализ разлагал величину предмета, например, движения, получали таким образом предметное значение, например, скорости, ускоряющей силы и т. п.; по этому значению они должны были приводить к правильным положениям, к физическим законам, и по их аналитической связи должны были определяться и их объективные связи и отношения, например, то, что в равномерно ускоренном движении существует особая пропорциональная временам скорость, к которой, кроме того, всегда присоединяется приращение, зависящее от силы тяжести. Такие предложения в новом аналитическом виде механики получались исключительно, как результаты вычисления независимо от того, имеют ли они для себя реальный, т. е. соответствующий некоторому существованию смысл и от доказательства этого; затруднение сделать понятною связь таких определений, когда они употреблялись в вышеупомянутом реальном смысле, например, объяснить переход от той ложно равномерной скорости к равномерному ускорению, считалось поэтому совершенно устраненным через аналитическую разработку, в которой сказанная связь есть простое следствие установленного раз навсегда прочного авторитета действий вычисления. Считалось торжеством науки нахождение путем простого возвышающегося над опытом вычисления законов, т. е. предложений о существовании, самих не имеющих существований. Но в первое еще наивное время исчисления бесконечных старались найти и оправдать реальный смысл таких определений и положений, изображенных в геометрических построениях, и применить их в этом смысле к доказательству главных положений, о которых шла речь [ср. ньютоново доказательство его основоположения теории тяготения в Princ. math. philos. naturalis lib. I sect. II prop. 1 сравнительно с астрономиею Шуберта (перв. изд. т. III § 20), где признается, что в пункте, составляющем самый нерв доказательства, нет точности, т. е. дело не совсем таково, как полагает Ньютон].
Нельзя отрицать, что в этой области многое, преимущественно при пособии тумана, напущенного бесконечно малыми, считалось за доказательство только потому, что то, что получалось, всегда было уже заранее известно, и что доказательство, построенное таким образом, что получался подобный вывод, имело по крайней мере видимость остова доказательства, видимость, которую все же предпочитали простой вере или опытному знанию. Но я без всякого колебания признаю эту манеру не за что иное, как за {184}простое фокусничество и шарлатанство доказательством, и причисляю сюда и ньютоновы доказательства, особенно такие, как вышеприведенное, за которое Ньютона возвысили до небес и превознесли над Кеплером, утверждая, что первый математически доказал то, что второй нашел лишь путем опыта.