Пустой остов таких доказательств воздвигнут для того, чтобы доказать физические законы. Но математика вообще не может доказать количественных определений физики, так как последние суть законы, обоснованные на качественной природе моментов; не может сделать этого по той простой причине, что математика не есть философия, не исходит от понятий, и что поэтому качественное, если только оно не почерпается лемматически из опыта, лежит вне сферы математики. Поставление достоинства математики в том, что все входящие в нее положения должны быть строго доказаны, часто побуждало забывать о ее границе; таким образом, казалось несогласным с ее достоинством считать опыт источником и единственным доказательством опытных предложений; позднее сознание этой истины более развилось; но прежде, чем будет выяснено различие того, что математически доказуемо, и что может быть взято лишь извне, как, например, того, что есть лишь член аналитического развития, и что — физическое существование, научность не может считаться достигшею строгого и чистого состояния. А упомянутому остову ньютонова доказательства противоречит уже то право, которое признано за другим неосновательным искусственным ньютоновым построением из оптических опытов и связанных с ними выводов. Прикладная математика еще полна смешением поровну опыта и рефлексии; но подобно тому, как уже довольно давно одна за другою части этой (ньютоновой) оптики стали фактически игнорироваться наукою с тою, однако, непоследовательностью, что прочие ее части, хотя и с противоречием тому, еще сохраняются, — также точно является фактом, что часть этого обманчивого доказательства сама собою уже пришла в забвение или заменена другими доказательствами.
Примечание 2-е
Цель дифференциального исчисления, выведенная из его приложения
В предыдущем примечании рассмотрены отчасти определенность понятия бесконечно малого, находящего употребление в дифференциальном исчислении, отчасти основания его введения в это исчисление; то и другое суть отвлеченные и потому легкие определения; но так называемое приложение представляет более трудностей, равно как более интересных сторон; элементы этой конкретной стороны должны составить предмет настоящего примечания. Весь метод дифференциального исчисления сводится к положению dxn=nxn-1dx или иначе (f(x+i)—fx)/i=P, т. е. равно коэффициенту первого члена двучлена x+d, x+i, развитого по степеням dx или i. Далее нечему учиться новому; вывод ближайших форм дифференциала произведения, степени и т. д. вытекает отсюда механически; в короткое время, в {185}каких-нибудь полчаса — с нахождением дифференциалов дано также и обратное, нахождение по ним первоначальной функции, интегрирование — можно освоиться со всею теориею. Задерживает на ней долее лишь стремление усмотреть, сделать понятным, каким образом после того, как одна сторона задачи, нахождение этого коэффициента решена так легко аналитическим, т. е. совершенно арифметическим путем через развитие функции переменной величины, получившей форму двучлена путем приращения, оправдывается и другая ее сторона, именно опущение прочих членов полученного ряда. Если бы было признано, что единственно в этом коэффициенте и есть нужда, то с его нахождением все, что касается теории, было бы, как сказано, закончено менее, чем в полчаса, и опущение прочих членов ряда не представляло бы никакого затруднения, так как о них, как о членах ряда (как вторая, третья и т. д. производные функции, они находят свое определение уже при определении первой), вовсе не поднималось бы речи, ибо в них не было бы никакой надобности.