Мы подошли, таким образом, к обычному аналитическому развитию, понимаемому для цели дифференциального исчисления так, что переменной величине дается приращение dx, i, и затем степень двучлена развертывается в соответствующий ей ряд. Но так называемое приращение должно быть не определенным количеством, а лишь формою, все значение которой состоит {191}в том, чтобы быть вспомогательным средством раскрытия ряда; то, к чему по признанию, определеннее всего выраженному Эйлером и Лагранжем, а также подразумеваемому вышеупомянутым представлением о пределе, стремятся в этом случае, суть лишь получающиеся при этом степенные определения переменных величин, так называемые коэффициенты, хотя и присущие приращению и его степеням, составляющим порядок ряда и причастным различным коэффициентам. При этом следует заметить, что хотя приращение, не имеющее определенного количества, принимается лишь для целей развития, но было бы всего уместнее обозначить его единицею (1), так как она постоянно повторяется в развитии, только как множитель, причем именно множитель единица достигает той цели, что через приращение не получается никакой количественной определенности и изменения; между тем как dx, сопровождаемый ложным представлением некоторой количественной разности, и другие знаки, например i, имеющие здесь бесполезную видимость общности, всегда сопровождаются показностью и притязанием какого-то определенного количества и его степеней; каковое притязание вызывает затруднения отбросить их и пренебречь ими. Для сохранения формы ряда, развернутого по степеням обозначения показателей, последние как знаки (indices) могли бы с таким же удобством быть присоединяемы и к единице. Но сверх того должно отвлечь и от ряда, и от определения коэффициентов по месту, занимаемому ими в ряду, так как отношение между всеми ими одно и то же; вторая функция выводится из первой точно так же, как первая из первоначальной функции, и для той, которая считается второю, первая производная функция есть опять-таки первоначальная. По существу же интерес направляется не на ряд, но единственно на получаемое через развитие степенное определение в его отношении к ближайшей к нему величине. Поэтому вместо того, чтобы считать это определение коэффициентом первого члена развития, было бы предпочтительнее, так как каждый член есть первый относительно следующих за ним членов ряда, считать такую степень степенью приращения, или поскольку самые ряды не имеют здесь значения, употреблять выражение производная степенная функция или, как сказано выше, функция возвышения величины в степень; причем признается за известное, каким путем совершается вывод, как заключенное внутри некоторой степени развитие.