Рассмотрим прежде всего первое отношение и возьмем из так называемого приложения для решающего определения того момента, в котором заключается интерес действия, простейший пример кривой, определяемой уравнением второй степени. Как известно, через уравнение непосредственно дается в степенном определении отношение координат. Следствиями основного определения служат определения других прямых линий, связанных с координатами, касательной, подкасательной, нормальной и т. п. Но уравнения, связующие эти линии с координатами, суть линейные уравнения; те целые, как части которых определяют эти линии, суть прямоугольные треугольники, составленные прямыми линиями. Переход от основного уравнения, содержащего степенное определение, к этим линейным уравнениям есть вышеуказанный переход от первоначальной функции, т. е. от уравнения, к производной функции, которая есть отношение и притом отношение между известными, содержащимися в кривой линиями. Связь между отношениями этих линий и уравнением кривой и есть искомое.
Не безынтересно привести здесь только ту историческую справку, что первые исследователи умели решать эту задачу лишь совершенно эмпирически, не отдавая себе отчета в совершенно внешнем характере действия. Я ограничусь указанием на Барроу, учителя Ньютона. В своих Lect. opt. et geom., в которых он решает задачи высшей геометрии по методу неделимых (частей), отличающемуся ближайшим образом от особенностей дифференциального исчисления, он сообщает, «так как на том настаивают его друзья (lect. X)», свой способ определения касательных. Нужно прочесть у него самого, как решает он эту задачу, чтобы составить должное представление о совершенно внешнем правиле этого способа, совершенно в том же стиле, как излагалось ранее в учебниках арифметики тройное правило. Он чертит те маленькие линии, которые впоследствии были названы приращениями в характеристическом треугольнике кривой линии, и затем предписывает в виде простого правила отбросить, как излишние, члены, получающиеся путем развития уравнений, как степени или произведения этих приращений (etenim isti termini nihilum valebunt), a также и те члены, которые содержат определенные величины лишь из первоначального уравнения (то, что впоследствии достигалось вычитанием первоначального уравнения из него же с приращениями), и напоследок вставить вместо приращения ординаты самую ординату и вместо приращение абсциссы — подкасательную. Невозможно, если позволительно так выразиться, изложить способ более педантично; это подстановление основано на принимаемой обычным методом дифференциального исчисления для определения касательной пропорциональности приращений ординаты и абсциссы с ординатою и под{194}касательною; в правиле Барроу это допущение является во всей своей наивной наготе. Простой способ определения подкасательной был уже найден; способы Роберваля и Ферма сводятся к подобному же; метод последнего находить наибольшие и наименьшие значения функций исходит из того же основания и того же предела. Математическою страстью того времени было изобретать так называемые методы, т. е. правила этого рода, и притом держат их в тайне, что было не только легко, но даже в известном отношении нужно и нужно именно потому, что было легко, именно потому, что изобретатели находили лишь внешнее эмпирическое правило, а не метод, т. е. не нечто, выведенное из признанных начал. Такие так называемые методы Лейбниц воспринял от своего времени, а также и Ньютон, и последний принял их непосредственно от своего учителя; они проложили новые пути в науке через обобщение их формы и приложимости, но при этом чувствовали потребность освободить прием от вида совершенно внешнего правила и дать ему потребное оправдание.