При ближайшем анализе метода истинный ход действия оказывается таков. Во-первых, степенные определения (само собою разумеется переменных величин), содержащиеся в уравнении, приводятся к их первым производным функциям. Тем самым изменяется значение членов уравнения; уравнения уже более не остается, но возникает лишь отношение между первою производною функциею одной переменной величины и такой же функциею другой; вместо рх=у2 получается р:2у, вместо 2ах — х2=у2 получается (а — х):у, что впоследствии и было обозначено, как отношение dx/dy. Это уравнение есть уравнение кривой, а это отношение, вполне зависимое от уравнения и выведенное из последнего (как указано выше, по простому правилу), есть, напротив, линейное, равное отношению между линиями; р:2у или (а — х):у суть сами отношения прямых линий кривой, координат и параметра; но тем самым знание еще не подвигается вперед. Интерес состоит в том, чтобы узнать и о других связанных с кривою линиях, что им свойственно это отношение, найти равенство двух отношений. Поэтому, во-вторых, является вопрос, какие прямые линии, определенные свойствами кривой, находятся в таком отношении. Но это есть то, что было узнано уже ранее, а именно, что такое этим путем полученное отношение есть отношение ординаты к подкасательной. Старые математики нашли это остроумным геометрическим способом; то, что было открыто новыми исследователями, есть эмпирический прием, состоящий в выводе такого уравнения прямой, из которого было бы видно то первое отношение, о коем уже известно, что оно равно отношению, содержащему линии, в данном случае, подкасательные, подлежащие определению. Этот вывод уравнения понимался и исполнялся отчасти методически, путем дифференцирования, отчасти же были изобретены воображаемые приращения координат и воображаемый образованный из них и такого же приращения касательной характеристический треугольник, дабы пропорциональность отношения, найденного через понижение сте{195}пени уравнения, с отношением ординаты и подкасательной, оказалась полученною не эмпирически, как уже давно знакомая, но путем доказательства. Однако, старое знакомство проявляется вообще и, несомненно, в том, что вышеуказанная форма правила оказывается единственным поводом и относительным оправданием к принятию характеристического треугольника и упомянутой пропорциональности.

Перейти на страницу:

Все книги серии Наука Логики

Похожие книги