- Дело, видишь ли, тут вот какое. Если ты умеешь составить уравнения прямой или кривой, то, получив их, можешь действовать с этими уравнениями, как с алгебраическими выражениями, что гораздо проще, чем возиться с геометрическими построениями. Если, например, надо найти точку, где пересекаются две кривые, то, зная, как написать их уравнения (другими словами, зная, как выражается игрек через икс для одной из кривых и как выражается игрек через икс для другой), приравнивают эти алгебраические выражения друг другу и решают обычным путем получившееся таким образом уравнение относительно икса. Решение дает абсциссу искомой точки. Подставив икс в любое из уравнении, ты находишь и ординату, то есть значение игрека. Ну вот, к примеру, у нас есть две прямые:

y1 = 25 + 19x;

у2 = 5 + 9х.

Спрашивается: где пересекаются эти прямые? Другими словами, требуется найти координаты точки пересечения этих прямых. Совершенно очевидно, что в искомой точке и у1 и у2 имеют одно и то же значение, а следовательно, мы найдем абсциссу точки пересечения из такого уравнения:

25 + 19х = 5 + 9x.

Решая это уравнение, находим, что

x: = -2.

- 328 -

Вращая около этой оси часть круга, меньшую его половины, мы получаем лимонообразное тело.

Если тело обрезать сверху и снизу, получается бочка, объемом которой интересовался Кеплер. Еще более близкое к бочке теле можно получить из эллипса подобным же образом.

Чтобы найти ординату точки пересечения, подставляем найденное значение икса в любое из уравнений прямых и получаем:

y = -13.

Итак, координаты точки пересечения найдены, они равны:

-2; -13.

Когда Декарт, говорят, привел в порядок все эти свои открытия, то он сказал: "Я решил все геометрические задачи". И это было справедливо в том смысле, что, владея его методом, можно было решить почти все задачи, известные в то время. Для примера того, как расширялись возможности наших суждений, вспомним параболу. Сперва греки говорили, что парабола есть сечение конуса плоскостью, параллельной образующей конуса. Затем, после того как было формулировано понятие геометрического места и оценено значение этого понятия, они определили параболу так: это геометрическое место точек, равноотстоящих от прямой и точки (директрисы и фокуса). А по методу Декарта легко показать, что парабола - это график квадратного трехчлена. Чисто геометрическое построение сроднилось с чисто алгебраическим. Причем и то и другое очень выиграло в смысле наглядности и простоты. Таким образом, ум математика освободился от целого ряда мелких, но хлопотливых трудностей, и это помогло заняться более важными работами.

- 329 -

Парабола третьего порядка.

Один вещественный корень и два комплексных.

Геометрия и алгебра как бы слились в одну науку, и их сила увеличилась от этого во много раз. Алгебра позволяет преобразовывать уравнения, выражающие геометрические соотношения, а геометрия наглядно представляет смысл многих алгебраических зависимостей и преобразований. Можно теперь высказывать очень странные на первый взгляд суждения, например, что у квадратного трехчлена есть ось или фокус. И ты будешь прав: действительно у геометрического образа квадратного трехчлена, то есть у параболы, имеется и то и другое.

- 330 -

А есть ли смысл в таких "странных" замечаниях? Представь себе, что есть, и вот пример. Что это, собственно, означает, что у квадратного уравнения имеются два корня? Это значит, что парабола на графике дважды пересекает ось абсцисс, или ось иксов, как мы это выяснили в Схолии Двенадцатой. Что значит, что у квадратного уравнения нет вещественных корней? Это значит, что соответствующая на графике данному квадратному трехчлену парабола совсем не пересекает оси иксов - она вся находится либо выше этой оси, либо ниже ее. Если взять уравнение третьей степени:

х3 + Ах2 + Вх + С = 0,

то у него должно быть три корня, например:

x1 = а; х2 = b; х3 = с,

теперь можно составить такое уравнение:

(x - а) (х - b) (х - с) = x3 - х2 (а + b + с) +

+ х (ab + ас + bc) - abc = 0,

откуда следует, что коэффициенты уравнения третьей степени связаны с корнями следующим образом:

А = - (а + b + с); В = ab + ас + bc; С = - abc.

Три вещественных корня.

- 331 -

Рассмотрим теперь, что обозначает геометрически утверждение о трех корнях. Если мы напишем

у = х3 + Ах2 + Вх + С,

Перейти на страницу:

Похожие книги