где выясняется, какие прекрасные математические плоды нашел однажды астроном Кеплер. Затем Радикс знакомит Илюшу поближе с его старой приятельницей касательной, и тут он узнает, что эта линия является волшебницей, умеющей делать самые настоящие чудеса, а кроме того, объясняются некоторые необъяснимости, как, например, почему Илюша не может закинуть камень в 20 граммов весом за полкилометра, хотя, согласно тройному правилу, это вполне возможно. Дальше выясняется, как наконец подружились Кеплер и Галилей с Аполлонием и Архимедом, кто мешал этой дружбе, и что из этого получилось, и как после этого Исаак Ньютон пришел с простыми и умными гипотезами и со своим "микроскопом" в царство тех могущественных карликов, которых мы называем бесконечно малыми, и как они научили людей познавать законы природы.

Громадный призрак исчез. Радикс и Илюша поблагодарили любезных старичков и собрались уходить.

- Постой, - сказал Коникос, - а ведь ты не попробовал еще нашего замечательного кваску. Выпей-ка!

Илюша взял большой красивый стакан, в который Коникос налил квас из фонтана, и стал пить. Было очень вкусно.

Однако Илюша заметил, что с каждым глотком квас менял вкус. Сначала он явно был яблочный, затем напоминал лимон, а потом стал пахнуть айвой.

- 326 -

- Очень вкусно! - сказал Илюша. - Но только почему, когда его пьешь, то вкус все время меняется?

- Потому, - наставительно сказал Коникос, - что этот фонтан есть источник имени великого Кеплера, ученого начала семнадцатого века. Он первый после долгого и бесплодного перерыва возобновил работу над сложением бесконечно малых частиц, начатую Архимедом. И он-то и вычислил объем тела, получаемого от вращения части круга, несколько большей его половины. Это тело похоже на яблоко. Вот почему наш квас и пахнет этим кеплеровским яблоком. При вращении части круга, меньшей половины, он получил другое тело и назвал его лимоном. А из вращения большей части эллипса он получил новое тело, которое назвал айвой. Из вращения меньшей части эллипса он получил оливу. Вот какие плоды были у Кеплера! А кроме того, он нашел объемы еще многих других тел.

- А теперь это сладкое вино! - воскликнул Илюша.

- А это потому, - сказал, улыбаясь, Асимптотос, - что Кеплер ведь занимался еще вычислением объемов винных бочек. Его работа так и называется "Новая стереометрия винных бочек". Она вышла в тысяча шестьсот шестнадцатом году.

- Очень вкусно! - заключил Илюша.

Затем они распростились с добрыми хозяевами сыроварни, получили на дорогу по большому куску сыра и отправились восвояси.

- Все это очень интересно, - сказал Илюша, - по все-таки я не совсем понимаю, как это делается.

- В семнадцатом веке, - сказал Радикс, - было уже довольно много ученых, которые занимались такими вопросами.

Развивалась алгебра, и в решениях разных задач стало легче разбираться. Когда ты решаешь задачу арифметически, то числа после перемножения или сложения сливаются воедино, и ты уже не можешь следить за тем, что с ними происходит в течение решения. А в алгебре весь ход решения задачи у тебя перед глазами, и его легко исследовать. Греки занимались геометризованной алгеброй. Арабы много сделали для самой алгебры. В их среде были крупные ученые. Некоторые из них продолжали и даже развивали работы Архимеда по суммированию бесконечно малых. Но настоящая алгебра связана уже с европейской математикой, в частности с именем Виеты, теорему которого ты, конечно, помнишь.

Вращая около этой оси часть круга, большую его половины, мы получаем яблокообразное тело.

Затем, как мы уже говорили, замечательный французский философ и математик Декарт открыл аналитическую геометрию и ввел в употребление метод координат, хотя попытки такого рода были сделаны еще греками, а затем Орезмом в четырнадцатом веке. Это было шагом в сторону, противоположную греческим ученым, - это было алгебраизацией геометрии.

- 327 -

Это открытие дало науке очень много новых возможностей.

- А что это были за возможности? - спросил Илюша.

Вращая около этой оси часть круга, большую его половины, мы получаем яблокообразное тело.

Перейти на страницу:

Похожие книги