- Твое слово "никогда", видишь ли, нехорошо в этом случае по той причине, - пояснил Радикс, - что на самом дело ты ведь не имеешь в виду времени, а хочешь только сказать, что в разложении процесса на этапы придется иметь дело с бесконечным числом этих этапов. К фактическому осуществлению вращения наклонной, протекающему в конечный промежуток времени, или к движению Ахиллеса это прямого отношения не имеет. Нас здесь интересует не время, а именно последовательные этапы процесса. Их удобнее всего было бы просто нумеровать: первый этап, второй и так далее, вовсе не упоминая о времени. Если тебе придет в голову разлагать какой-нибудь действительный процесс движения на такого рода этапы, то это будет только воображаемая операция.

- 219 -

И при подсчете времени, например, надо будет учесть, что действительное движение вовсе не обязано считаться с этим разложением и может проскочить через все твои этапы за конечный промежуток времени. Конечно, это все не очень простые вещи. Здесь есть над чем подумать, но мы пока ограничимся этим...

- Ограничимся? То есть как это ограничимся? - снова окрысился командор. - Ведь молодой человек сказал же, что переменная величина (помнится, там шла речь об угле) никогда не достигает своего предела...

- Но теперь я буду это понимать в том смысле... – заторопился Илюша.

- Ни в каком смысле это не верно, молодой человек! Вот рассмотри такое движение наклонной.

Из ее основания по другую сторону основного отрезка я восстановлю к нему перпендикуляр, а около него построю полуокружности одинакового радиуса, с центрами на этом перпендикуляре: одну по одну сторону от него, а следующую, соседнюю с ней снизу, - по другую, и так змейкой все дальше и дальше. Теперь вообрази себе прямую, которая все время проходит через основание этого перпендикуляра и через меняющую свое положение вторую точку, а та, в свою очередь, пробегает построенную тобой змейку сверху вниз. Что будет происходить с этой прямой?

- 220 -

- Она начнет поворачиваться сначала в одну сторону, потом немного меньше в другую, потом опять в ту...

- Вот теперь и проследи, хотя бы для сравнения с наклонной, за верхней частью этой твоей прямой: она будет колебаться около перпендикуляра. И, как ты думаешь, в пределе, когда точка по змейке будет удаляться все дальше и дальше, что же ты сможешь сказать об угле, который образует эта прямая с основным отрезком?

- Этот угол будет стремиться к прямому как к своему пределу, - отвечал Илюша. - Каждый раз, когда точка на змейке будет попадать на перпендикуляр, этот угол будет прямым... Но в конце концов...

- Если точка будет двигаться по змейке, то никакого конца концов тут нет. Только колебания около перпендикуляра будут, как говорится, затухать. Но ты мог бы прекратить строить змейку в каком-нибудь месте и заставить точку бежать дальше по перпендикуляру. Тогда у тебя прямой угол появился бы на соответствующем этапе процесса. И дальше он так бы и оставался прямым на всех дальнейших этапах бесконечного удаления точки вниз по перпендикуляру. И в этом случае ты можешь сказать, что в пределе угол, за изменением которого ты следил, будет равен прямому. В последней нашей схолии мы еще покажем тебе нечто в этом роде.

А вслед за этим командор улетел в неизвестность.

- Только вот чего я еще не понимаю, - сказал, вздыхая, Илюша.

- Ты говоришь, что в случае с Ахиллесом и черепахой мы только воображаем разложение процесса на бесконечное количество этапов и что действительное движение происходит непрерывно, без всяких этих этапов. Тогда зачем же такие разложения рассматривать?

- Видишь ли, - ответил Радикс, - на этот вопрос я тебе сейчас коротко ответить не могу. Дальше мы познакомимся с очень важными задачами, в решении которых бесконечные процессы играют основную роль. Тебе дана некоторая конечная величина; ты начинаешь как бы "исчерпывать" ее, и при этом столь ничтожными частицами, что в пределе действительно приходишь к полному ее "исчерпанию". Такое "исчерпание" конечной величины как раз и является одним из самых сильных средств математики, владея которым она и справляется с вопросами, относящимися к непрерывно изменяющимся переменным. Сейчас я могу только привести еще один, уже немного знакомый тебе пример, в котором оказывается полезным способ представления конечной величины в виде предела суммы неограниченно возрастающего числа слагаемых, каждое из которых стремится к нулю.

- 221 -

- Как это может быть? - спросил Илюша. - Если каждое слагаемое стремится к нулю, то, по-моему, и их сумма...

- Ты забываешь, что их число неограниченно возрастает.

Перейти на страницу:

Похожие книги