Начнем с простейшего случая. Представь себе, что единицу ты разделишь сначала на две части, возьмешь сумму этих двух дробей и получишь опять единицу. Но совершенно такой же результат получится, если разделить единицу на три части и сложить полученные три дроби, и так далее. Если ты произведешь деление на и равных частей, то каждая из них выразится дробью 1/n, а при неограниченном возрастании n будет бесконечно малой. Но если при каждом значении и составлять сумму и таких дробей, то все время будет получаться единица.
- Единица и есть единица. К чему же разбивать ее на части и потом опять собирать ее в целое из этих частей? - спросил Илюша.
- Представь себе, что часто, и притом в очень важных вопросах, именно этот способ и оказывается чрезвычайно мощным средством, но только, конечно, он применяется не в слишком уж простом виде. Вот послушай, я приведу тебе пример немного посложнее. Ты, конечно, помнишь, что отношение длины окружности к ее диаметру равно числу π. Так что длина круга с радиусом r будет выражаться числом 2πr. Представь себе, что формула для нахождения площади круга тебе неизвестна. Разбей весь круг на большое число - назовем его опять n - маленьких секторов, разделив окружность на n равных маленьких дужек и соединив точки деления с центром.
Каждый из этих секторов будет при неограниченном увеличении и все больше и больше напоминать равнобедренный треугольник, основание которого очень мало и почти сливается с дужкой, ограничивающей этот сектор. А сумма их площадей будет ведь все время оставаться равной все той же площади круга, совсем как в нашем первом примере.
- 222 -
Однако смысл всего этого в том, что площадь очень узенького сектора можно со все большей и большей точностью вычислять по формуле для площади треугольника, умножив основание - длину дужки - на половину высоты, то есть на половину радиуса. А если теперь собрать снова все это в одно целое, то достаточно умножить сумму длин всех дужек, то есть 2πr, на половину радиуса, и получится выражение для площади круга - πr2. Если ты интересовался не всем кругом, а только каким-нибудь его сектором, ограниченным дугой длиною l, то можно найти площадь такого сектора, умножив l на половину радиуса. Выходит, что ты действительно можешь совершенно точно получить площадь сектора по формуле площади треугольника, принимая длину дуги за основание, а радиус за высоту. Но сектор с большим центральным углом совсем не похож на треугольник, и ты смог прийти к этому результату здесь только потому, что предпринял то самое деление площади, которое казалось сперва совершенно бессмысленным. Разумеется, эти рассуждения мы провели схематично, в общих чертах; если их немного уточнить, то мы могли бы сказать, что площадь круга определяется нами как предел суммы площадей бесконечно возрастающего числа треугольников, боковые стороны которых равны радиусу, а основания равны неограниченно уменьшающейся хорде маленьких секторов. Ну, а теперь уж, - промолвил в заключение Радикс, - можно, пожалуй, сказать, что у нас в этом трудном вопросе в первом приближении все более или менее в порядке...
- В порядке! Ха-ха-ха! - раздалось откуда-то из-под облаков страшное громыхание плюшевого Мишки-великана.
- Хм! .. - грустно заметил Радикс. - Он, кажется, еще сомневается, все ли ты уразумел?
- Н-не знаю... - неуверенно признался Илюша.
- А не попробовать ли нам сначала? - крикнул Мишка.
- Давай попробуем! - робко сказал Илюша.
И снова вдруг сбежались знакомые человечки, составили формулу, опять Мишка стал маленьким и мирно сидел на тулье цилиндра, но справа появилось много человечков-малюток:
- 223 -
S = a1 (qn - 1) / (q - 1) - a1 / (q - 1) = a1 + a2 + a3 + ... an
- Ну? - вопросительно заявил Мишка.
Мгновенно человечки справа исчезли все, кроме первого, у которого на груди появилась цифра "1". Немедленно в лапке Мишки тоже оказалась единица, а на груди у тощей Суммы появилась та же самая единица.
- Вперед, друзья! - энергично скомандовал Мишка.