- Верно, - отвечал Радикс. - Но если так, значит, деления на сторонах угла позволяют нам определить положение точки внутри угла с помощью двух чисел, выражающих расстояния точки от сторон угла. Раз мы это выяснили, то тем самым мы сделали первый шаг к формулам, потому что формулы относятся именно к числам. Эти два числа называются координатами точки. Расстояние от вершины угла до основания перпендикуляра, опущенного на горизонтальную сторону угла, обычно обозначают буквой х и называют абсциссой точки. Горизонтальную сторону угла называют при этом осью иксов, или осью абсцисс. Другую сторону угла называют осью ординат, или осью игреков. Вторую координату точки - ее расстояние от оси абсцисс - обозначают буквой у, называя это число ординатой точки. Ось иксов и ось игреков называют осями координат, а точку их пересечения - началом координат. Очевидно, что для точки, лежащей в начале координат, и х и у равны нулю. Если двигать точку вправо, то значение х будет увеличиваться, а если ты будешь двигаться вверх, то будет расти значение у.

- Ясно. Если я пойду в левую сторону от оси ординат, то мне уже придется значения х считать отрицательными, а если пойду вниз, ниже осп абсцисс, то там надо значения у считать отрицательными.

- Совершенно верно. Теперь ты сможешь определить положение любой точки на плоскости с помощью двух чисел. Ну, а теперь подумаем, нельзя ли нам как-нибудь записать с помощью формулы то свойство биссектрисы, о котором мы только что говорили. Какую бы точку ни взять на биссектрисе, для нее длины перпендикуляров, опущенных на обе стороны угла, должны быть равны...

- 226 -

- То есть абсцисса и ордината всякой точки на биссектрисе равны между собой! - воскликнул Илюша. - Это я понимаю, но как же это записать, если абсцисса и ордината могут принимать какие угодно числовые значения? Когда, например, х равен единице, то и у должен равняться единице; когда х равен двум, то и у равен двум...

Илюша внимательно посмотрел на чертеж, потом на своего друга, немного поколебался и написал:

у = х.

- Правильно! - сказал Радикс. - Если ты будешь искать на плоскости те точки, координаты которых удовлетворяют этому условию, то ты как раз и получишь твою биссектрису.

Мы будем называть такие равенства, переводящие свойства геометрических образов на алгебраический язык, уравнениями кривых. Такие уравнения определяют положение точек по отношению к выбранным координатным осям. Кстати сказать, угол между осями необязательно нужно брать прямой. Вообще можно определять положение точки на плоскости и другими способами, то есть можно применять, как говорят, различные системы координат. Некоторые элементы такого рода системы употреблялись еще в Древней Греции, у Аполлония Пергейского (эллинистическая эпоха, время Архимеда).

- 227 -

А у нас здесь самая простая система прямоугольных координат на плоскости. Она потому так называется, что угол между осями прямой. Их называют также декартовыми, по имени замечательного француза, крупнейшего математика и философа Ренэ Декарта, жившего в семнадцатом веке, который впервые ввел их в науку. Их называют еще картезианскими, ибо ведь в то время ученые сочинения писали по-латыни и имена авторов тоже переделывали на латинский лад, а по-латыни Декарт называл себя Картезием. Однако надо тебе знать, что впервые метод координат был предложен тем самым удивительным математиком Пьером Ферма, с чьей замечательной теоремой ты недавно познакомился. Это было в тридцатых годах семнадцатого столетия, хотя некоторые схожие с этим методом приемы были известны еще древним. Ферма много и плодотворно занимался вопросом о значении понятия геометрического места, и вот в результате этих его размышлений и опытов родился на белый свет метод координат. В одной из своих работ великий французский геометр говорил, что он придумал этот метод специально для изучения вопроса о геометрических местах и что он уверен, что благодаря этому новому способу анализа изучение этой отрасли геометрии станет для всех доступным.

Перейти на страницу:

Похожие книги