Здесь я должен вернуться к своей оксфордской апологии и рассмотреть подробнее отложенные вопросы из шестой главы. Как вы уже поняли, в математике меня привлекает исключительно ее творческая составляющая. Но это не значит, что не стоит рассмотреть и другие аспекты, в частности «полезность» (или бесполезность) математики, по поводу которой возникает столько разногласий. Кроме того, не мешает обсудить и «безвредность» математики, о чем я так уверенно заявлял в своей оксфордской лекции.
Искусство и наука считаются «полезными», если их развитие ведет (хотя бы косвенно) к увеличению материального благосостояния и комфорта, то есть если они делают людей «счастливее» в примитивном и общеупотребительном понимании слова. Например, медицина и психология полезны, потому что облегчают страдания, а работа инженеров полезна, потому что помогает строить дома и мосты, повышая таким образом наш уровень жизни (о том, что инженерное дело также наносит немало вреда, пока речи нет). В этом смысле какая-то часть математики несомненно полезна: без солидных математических знаний никакой инженер не справился бы со своими задачами, а с недавнего времени к математике обратились даже физиологи. Это довольно подходящий аргумент в защиту математики. Может быть, не лучший и не особенно сильный, но безусловно достойный рассмотрения. Наличие у математики более «возвышенного» применения, как у любого другого вида созидательного творчества, никак не влияет на наш анализ. Подобно поэзии или музыке, математика может «приобщить ум к возвышенному» и тем самым поспособствовать счастью математиков, да и не только. Однако защита математики на этом основании означала бы возврат к уже сказанному. Сейчас же мы говорим о пользе математики в самом примитивном толковании слова.
20
Несмотря на, казалось бы, очевидность понятия «пользы», по этому поводу возникает немало путаницы, ведь изучение самых «полезных» дисциплин для большинства из нас в общем бесполезно. Неплохо иметь достаточное количество врачей и инженеров, но обыкновенным людям, как правило, ни к чему изучать физиологию или инженерное дело (хотя для такого обучения можно найти и другие основания). Что касается меня, я не припомню случая, когда мне пригодились бы иные научные знания, кроме чисто математических.
Меня в самом деле поражает, как мало практической ценности для обыкновенного человека несут в себе научные знания, как скучны и банальны знания, обладающие такой ценностью, и как их ценность чуть ли не прямо противоположна их общепризнанной полезности.
Считается полезным быстро справляться с арифметическими вычислениями (и это, конечно, чистая математика). Полезно немного владеть французским или немецким, иметь некоторые познания в истории с географией, ну и, пожалуй, в экономике. А вот знания в химии, физике или физиологии едва ли пригодятся в обычной жизни. Мы знаем, что газ горит, не имея представления о его составе; когда ломается автомобиль, мы отдаем его в ремонт; когда заболевает живот, мы идем к доктору или в аптеку. Мы живем, полагаясь на везение или на знания специалистов.
Кроме этого существует побочный интерес педагогов, заставляющий директоров школ с пеной у рта доказывать родителям, что их отпрыскам необходимо «полезное» образование. Называя физиологию полезной, мы имеем в виду не то, что ее следует изучать большинству людей, а то, что большинству людей пойдет на пользу развитие медицины усилиями горстки экспертов. И нас сейчас интересует, в какой мере на полезность такого рода может претендовать математика, какие разделы математики можно считать в этом смысле особенно полезными, и насколько, с точки зрения одной лишь полезности, оправданы интенсивные математические исследования, которыми занимаются профессиональные математики.
21
Теперь, когда вы наверняка догадались, к чему я клоню, самое время сформулировать выводы в догматическом виде, после чего немного их пояснить. Итак, большая часть элементарной математики – в том смысле, который в слово «элементарный» вкладывают математики и куда входят, например, солидные рабочие знания дифференциальных уравнений и интегралов, – безусловно, имеет практическую пользу. В целом, эта часть математики сравнительно скучна; эти разделы обладают наименьшей эстетической ценностью. «Настоящая» же математика – математика Ферма, Эйлера, Гаусса, Абеля и Риманна – практически вся «бесполезна» (и это относится как к прикладной, так и к фундаментальной математике). Жизнь ни одного настоящего профессионального математика нельзя оправдать, исходя из одной лишь «полезности» его трудов.