Сальвиати: Так что удаление брошенного тела от окружности предшествующего кругового движения вначале совсем ничтожно?
Симпличио: Почти неощутимо.
Сальвиати: Скажите мне теперь, пожалуйста, брошенное тело, которое от движения бросающего получает импетус движения по касательной прямой и которое пошло бы так и дальше, если бы собственный вес не тянул его вниз, с какого момента после отрыва начнет склоняться вниз?
Симпличио: Думаю, что начнет склоняться сразу, потому что за отсутствием поддержки собственная тяжесть не может не оказывать действия.
Сальвиати: Таким образом, если бы камень, отброшенный вращающимся с огромной скоростью колесом, имел такую же естественную склонность двигаться к центру этого колеса, с какой он движется к центру Земли, то ему нетрудно было бы вернуться к колесу или, скорее, вовсе не удаляться от него, ибо, раз в начале отрыва удаление столь ничтожно из-за бесконечной остроты угла касания, малейшего уклонения по направлению к центру колеса было бы достаточно, чтобы удержать его на окружности.
Рассуждение Галилея, хотя и ошибочно, все же довольно убедительно. Действительно, угол, образованный окружностью колеса и направлением движения (импетусом), которое сообщает камню вращение, бесконечно мал; его основная составляющая, стало быть, также бесконечно мала; следовательно, заключает Галилей, для противодействия достаточно бесконечно малой силы.
Для того чтобы произошел отрыв, необходимо и достаточно, чтобы скорость, которую производит вращение, превосходила скорость свободного падения. Очевидно, речь идет не о тангенциальной скорости, а о скорости удаления – радиальной скорости. Но почему последняя, хотя она и бесконечно мала, все же не будет больше, чем скорость свободного падения?
Галилей, однако, утверждает, что это невозможно и что это все равно было бы невозможно, даже если бы скорость свободного падения, как предпочитали думать последователи Аристотеля, была тем меньше, чем меньше весит тело. Кроме того, даже если бы уменьшение тяжести тела уменьшало до бесконечности скорость свободного падения и если бы движению отбрасывания благоприятствовали две причины – а именно
легкость движущегося тела и близость к точке покоя, и обе они способны возрастать до бесконечности,
этой двойной бесконечности все равно было бы недостаточно. Таким образом, a fortiori, и одной бесконечности было бы недостаточно672.
Доказательство Галилея чрезвычайно любопытно673: