Так, если момент времени равен AIRS, то отношение расстояний будет равно ADЕ c klmn к ACB с klmnopqt – т. е. опять же с удвоенным klmn. Но klmn гораздо меньше, чем AFE. Следовательно, так как отношение проходимого расстояния к пройденному расстоянию составлено из отношения одного треугольника к другому, и к таким условиям [пропорции] прибавляются равные [величины], и так как эти равные присоединенные части становятся тем меньше, чем меньше единицы расстояния, отсюда следует, что эти присоединенные части оказываются нулевой величины, когда величина момента равна нулю. Таков момент расстояния падающего тела. Остается теперь доказать, что расстояние, которое проходит падающее тело за один час, относится к расстоянию, которое оно проходит, падая два часа, как треугольник ADE к треугольнику ACB…

Если, стало быть, опыт показал бы, что тело, падая два часа, проходит 1000 футов, то треугольник АВС будет содержать 1000 футов248. Отсюда корень составляет 100 для линии АС, которая соответствует двум часам. Поделив ее точкой D на равные части, получим AD, соответствующую одному часу. Каким получается двойное отношение AC к AD, т. е. 4 к 1, получается также отношение 1000 к 250, т. е. ACB к ADE.

Решение одновременно изящное и правильное: пройденные расстояния оказываются пропорциональны квадратам времени. Но решение Декарта не таково: Бекман, как известно, ошибся, интерпретируя ответ г-на дю Перрона249. В самом деле, вот переизложение, которое нам оставил сам Декарт.

В своих «Cogitationes Privatae» Декарт кратко отмечает250:

Несколько дней назад мне довелось завязать дружбу с одним весьма ученым мужем, который задал мне следующий вопрос:

Камень, говорил он, нисходит от точки А к точке В в течение одного часа; он неизменно притягивается Землей с одинаковой силой и не теряет скорости, которая была ему сообщена через предыдущее притягивание. Но то, что движется в пустоте, по его мнению, движется вечно. Спрашивается, за какое время камень пройдет заданное расстояние.

Отметим прежде всего, что Декарт признавал, что получил от Бекмана и вопрос, и принципы решения251 – принципы, которые не имеют для него истинного значения, в отличие от Бекмана. Для Декарта они не более чем гипотезы, которые он, впрочем, не вполне понимает. Это не мешает ему разрешить данную проблему и даже предложить два различных решения. Бедный Бекман о таком и не просил, он лишь хотел узнать, как падают камни. Декарт этим не удовлетворился и объяснил ему, как они могли бы падать252.

Итак, вот его ответ253:

Перейти на страницу:

Поиск

Все книги серии История науки

Похожие книги