Две последние мозаики очень похожи друг на друга, хотя внешне у них все вроде бы наоборот: вершины одной служат центрами граней другой (18, 19). Символы их {3,6} и {6,3} совсем не случайно симметричны, и не случайно треугольная и гексагональная мозаики называются двойственными. Про квадратную же мозаику {4,4} приходится сказать, что она двойственна сама себе.

"Искусство орнамента содержит в неявном виде наиболее древнюю часть известной нам высшей математики", — пишет в своей прекрасной книге "Симметрия" Герман Вейль. Его высказывание ни в явном, ни в неявном виде не содержит гиперболы: среди декоративных узоров древности, главным образом в египетских орнаментах, дошедших до нас, содержатся все возможные виды симметричного расположения на плоскости любых фигур, а таких видов, оказывается, всего семнадцать. "Вряд ли возможно переоценить глубину геометрического воображения и изобретательность, запечатленные в этих узорах, — продолжает Вейль. — Их построение далеко не тривиально в математическом отношении... 17 видов симметрии, в неявном виде известных еще египетским ремесленникам, исчерпывают все возможные случаи. Довольно странно, что доказательство этого факта было дано лишь в 1924 г. Д. Пойя".

Еще более, пожалуй, странно, что такой крупный специалист, как Герман Вейль, тут ошибается: все эти семнадцать расположений были найдены известным русским ученым Евграфом Степановичем Федоровым и описаны в его работе "Симметрия на плоскости", изданной в Санкт-Петербурге в 1891 году. Впрочем, проблема эта интересовала многих ученых. Шестнадцать из семнадцати групп указал француз Камилл Жордан в "Мемуаре о группах движения" в 1869 году, тринадцать — немец Леонгард Зонке спустя еще пять лет. И, надо сказать, было из-за чего тратить время и бумагу. Речь шла не просто о математических курьезах — создавался подход к пониманию строения кристаллов, "каменных цветов", удивительных созданий Природы.

16

Первое разумное суждение о том, в чем загадка правильной формы кристаллов, было высказано, видимо, Иоганном Кеплером в трактате "О шестиугольном снеге". Оно относится к снежинкам. Почему они всегда шести-лучевые или шестиугольные? — спрашивал он себя. И пришел к гениальному для тех времен выводу: потому, что невидимые капельки водяного пара шарообразны и на холоде приклеиваются друг к другу таким образом, что каждая сцепляется с двенадцатью другими, "подобно зернам граната". Это было в начале XVII века и никто еще не сумел заглянуть внутрь вещества, и даже Ньютон еще не затеял своего спора с Грегори о целующихся сферах.

"Чтобы познать невидимое, смотри внимательно на видимое" — сказано в одной древней книге. сознательно или подсознательно этому принципу следовали все ученые, которым предстояло заложить фундамент новой науки — кристаллографии. Французский минералог Рене Жюст Гаюи однажды случайно уронил кристалл известкового шпата. Подобрав кусочки, он увидел, что они в точности повторяют форму разбившегося кристалла. Заинтригованный, он стал один за другим разбивать кристаллы из своей огромной коллекции и, как писал впоследствии его биограф, "продолжая трудиться на этом поприще, сделался основателем кристаллографии".

Вместе с тем, правда, Гаюи получил и насмешливое прозвище "кристаллокласт" — "разрушитель кристаллов", которое присвоили ему коллеги, предпочитавшие умозрительный подход к проблеме кристаллов слишком уж, на их взгляд, грубому натурному эксперименту. Но прошли долгие десятилетия, прежде чем почти одновременно Е. С. Федоров в России и А. Шенфлис в Германии, независимо друг от друга — один шел геометрическим путем, а другой воспользовался алгебраическим аппаратом теории групп — вывели все возможные в пространстве группы симметрии, которые определяют собой и все разнообразие кристаллических форм в природе. Любопытно, что когда они сверили результаты своих работ, то оказалось, что Федоров насчитал 229 возможных способов сочетания частиц в кристалл, а Шенфлис — 227. Федоров пропустил один способ, замеченный Шенфлисом, но тот зато проглядел целых три, указанных Федоровым. Немедленный обмен письмами позволил исправить недосмотры, и с тех пор в кристаллографии твердо установлено, что федоровских групп ровно 230.

17

"Все мои работы — это игры, серьезные игры", — говорил о себе голландский художник Мауриц Корнелис Эсхер, гравюрами которого иллюстрирована не только эта, но и множество других книг, вышедших в разных странах и так или иначе связанных с наукой. Исследования Федорова и Шенфлиса тоже довольно долго рассматривались как некие математические забавы и развлечения, не имеющие отношения к правде жизни. Еще Рентген не открыл своих знаменитых лучей, Беккерель — радиоактивности, Томсон — электрона и, наконец, Лауэ не обнаружил рассеяния рентгеновских лучей кристаллами. Все эти события должны были произойти для того, чтобы федоровские группы легли в основу точного и математически строгого расчета архитектуры кристаллов.

Перейти на страницу:

Похожие книги