"В 1951 году и в последующие годы А. В. Шубников, Н. В. Белов и другие расширили теорию кристаллографических групп, соединив периодическое повторение форм с периодическим повторением цветов. Эта теория полихроматической симметрии добавляет к 17 федоровским группам 46 двухцветных, 6 трехцветных, 6 четырехцветных и 3 шестицветных. Почти наверное русские не знали, что Эсхер, опираясь на одну лишь свою художническую интуицию, безо всякой математики, предвосхитил многие из полученных ими результатов. Например, очарование его знаменитых мотивов со всадниками увеличивается благодаря тому, что фигуры на них либо белые, либо серые — в зависимости от того, скачут ли они слева направо или справа налево"[6], — пишет неоднократно упоминавшийся в этой книге профессор Гарольд Скотт Макдональд Коксетер.
"Что такое красота? — спрашивал профессор Александр Александрович Любищев в своей посмертной статье, в которой он, биолог, размышлял о морозных узорах на окнах. — Одно из самых загадочных явлений природы. И как в законах строения и развития природных тел мы имеем разные уровни, так есть они и в прекрасном. И на самом высшем уровне, может быть, находятся абстрактнейшие математические теории и высшие музыкальные творения гениальных композиторов. Не всем дано подняться на эти вершины, но, как в капле воды отражается солнце, так некоторый намек на высшую красоту мы можем постичь, внимательно рассматривая такое скромное явление, как ледяные узоры на стеклах..."
"Видимо, мыслима какая-то новая кристаллография, которую с полным правом, по образцу неевклидовой геометрии, можно назвать "нефедоровской" — такова основная мысль статьи Любищева. "Я думаю, что физики обращали так мало внимания на ледяные узоры не потому, что считали это пустяками (для истинного ученого нет пустяков в природе), — пишет он, — а потому, что еще не наступил момент для нарождения нефедоровской кристаллографии".
Такой момент, видимо, все-таки уже наступил. В классическом труде академика Алексея Васильевича Шубникова "Симметрия и антисимметрия конечных фигур" к геометрическим операциям симметрии — переносу, повороту, зеркальному отражению — присоединена еще и операция "изменение цвета". Понятие черно-белой симметрии, или антисимметрии, столь удачно иллюстрируемое гравюрой Эсхера "День и ночь", оказалось необычайно плодотворным в таких, например, областях, как изучение расположения диполей в магнитных полях. Академик Николай Васильевич Белов со своими сотрудницами Н. Н. Нероновой и Т. С. Смирновой доказал, что существует ровно 1191 двухцветная федоровская группа.
Теория цветной симметрии развивалась и дальше. Одно из условий, выводимых из нее, гласит, что если пренебречь цветами и все темные тона объединить в один черный, а все светлые — в один белый цвет, то мы сразу получим все известные 46 черно-белых, то есть двухцветных, мозаик.
...Пожалуй, разговор о мозаиках, с которого началась эта глава, увел нас слишком далеко. Впрочем, предощущения грядущих открытий в самых фундаментальных областях знания не так уж необычны для науки. Задолго до первых кристаллографических откровений не кто иной, как Исаак Ньютон, писал: "Нельзя ли предположить, что при образовании кристалла частицы не только становились в строй и в ряды, застывая в правильных фигурах, но также посредством некоторой полярной способности повернули свои одинаковые стороны в одинаковом направлении?" Не правда ли, удивительное провидение? Быть может, спустя всего несколько лет мы с таким же чувством будем перечитывать фразу из статьи Любищева: "Развитие биологии убедило ученых, что есть в природе законы, ограничивающие многообразие форм и регулирующие развитие..."
Кристаллографические элементы организованности, характерные для белков, обещают нам наиболее глубоко проникнуть в тайны управляемых белками жизненных процессов.
VI. Мировая гармония
Рано или поздно всякая правильная математическая идея находила применение в том или ином деле.
"Симметрия... охватывает свойства всех физических полей, с которыми имеют дело физик и химик", — считал академик Владимир Иванович Вернадский. Но если уж речь идет о физике и химике, то что говорить о математике?