"Федоровская группа — это лишь канва, по которой природа может вышивать бесконечно разнообразные узоры атомных расположений. Но типов канвы всего 230, и великая заслуга Федорова и Шенфлиса заключается в том, что они установили этот факт и перечислили все возможные случаи. Чтобы в полной мере оценить удивительную проницательность, которую проявили эти ученые при выводе пространственных групп, нужно иметь в виду, что в те времена действительное расположение атомов в кристаллах совершенно не было известно". Цитата взята из книги П. М. Зоркого "Архитектура кристаллов". В ней автор позволил себе любопытное признание: "По-видимому, в последнее время несколько изменились функции научно-популярной литературы. Стремительное увеличение объема научных знаний часто не позволяет ученым и инженерам следить за развитием смежных областей науки, пользуясь специальными статьями и монографиями. Слишком много времени и сил требует основная работа. На помощь приходит научно-популярная литература. Она дает возможность сохранять широту кругозора, а иногда (автор знает об этом по собственному опыту) может пригодиться в основной работе".
Слова эти, написанные в наше время, в конце шестидесятых годов, едва ли вызвали бы возражение и в прежние времена. Евграф Степанович Федоров начал работать над своей первой монографией "Начала учения о фигурах" шестнадцатилетним гимназистом. И еще шестнадцать лет прошло, прежде чем он ее кончил. Причиной тому, видимо, не одна лишь необычная фундаментальность мышления, которая замечалась у будущего академика Петербургской академии наук. Виной тому и популярная литература, которая сбила его с прямого математического пути, заставила заинтересоваться кристаллографией, поступить в Горный институт, закончить его и потерять возможность разграничивать математику и кристаллографию на "основную" и "смежную" науки.
Нечто похожее случилось и с Маурицем Корнелисом Эсхером.
"В наше время, когда искусство и наука живут в различных областях духовной жизни и при этом стремятся разойтись все дальше и дальше друг от друга, столь удивительно вдруг встретить художника, который в своей творческой деятельности занят проблемами, лежащими в основании целых наук и нескольких математических дисциплин. подобное не случалось с тех времен, когда художники открывали законы перспективы и были пионерами в анатомических исследованиях", — пишет во введении к своей книге "Проблемы симметрии в периодических рисунках М. К. Эсхера" профессор Амстердамского университета Каролина Генриетта Мак-Гиллаври. Книга эта, состоящая из более чем сорока работ художника и соответствующего кристаллографического толкования их, служит учебным пособием для студентов.
"Я часто удивлялся своей мании создавать периодические рисунки, — писал сам художник. — Однажды я спросил своего друга, психолога, в чем причина моей увлеченности ими, но его ответ, что меня ведет здесь примитивный инстинкт повторения сделанного, ничего не объяснил".
И в самом деле, каким инстинктом объяснить поразительную по плавности перехода от рыбы, плывущей в темных глубинах моря, к птице, летящей в прозрачной высоте, гравюру "Небо и вода. I" или четкую в своем стремлении связать живое с неживым гравюру "Рептилии"? А ведь обе они построены на "повторении сделанного".
"Почему я одинок в этом деле? — продолжает Эсхер. — Отчего никто из моих коллег-художников не интересуется фигурами, которые входят одна в другую? А ведь фигуры эти подчиняются неким вполне объективным законам, которые всякий художник мог бы использовать в своей работе!
Свой первый рисунок такого рода я сделал в 1922 году. Он представлял собой соединение восьми различных человеческих голов[5]. В последующие годы я нарисовал около полутораста картинок такого типа. Я не мог удержаться от удовольствия повторять на бумаге одни и те же формы без зазоров между ними. Рисунки эти поглощали у меня вначале массу времени, потому что я ничего не слышал о кристаллографии и не знал даже, что мои игры основаны на правилах, хорошо изученных учеными.
Много лет спустя я впервые познакомился с кристаллографическими теориями... таким путем установился плодотворный контакт между математиками и мною".
Мозаики Альгамбры пленили воображение молодого художника, путешествовавшего по Испании. Но лишь знакомство с математической стороной кристаллографии, с федоровскими группами в частности, помогло ему осознать истоки собственной увлеченности. И то, что ему и окружающим казалось игрой ума, стало вдруг учебным пособием, более того — предметом изучения и причиной вдохновения математиков. Гравюра "День и ночь" — лишь один из примеров тому. Удивительное дело! Эсхер создал ее в 1938 году, когда еще и в помине не было идеи антисимметрии (хотя высказана она была Хеешем в 1929 году, но в науку вошла лишь после работ академика А. В. Шубникова, появившихся в конце сороковых годов), однако до сих пор нет и не мыслится лучшей иллюстрации этой важной и глубокой идеи современной науки.