Правильные геометрические мозаики, истинные образцы симметрии, как мы имели удовольствие убедиться, двойственны в том смысле, что центры составляющих их фигур служат вершинами для других фигур. И точно так же дело обстоит у правильных многогранников, только их в этом случае называют взаимными. Октаэдр, например, взаимен кубу[7] (20, 21), икосаэдр — додекаэдру (22), а вот тетраэдр взаимен сам себе (23), как квадратная мозаика тоже сама себе двойственна (19). Об этом говорит и симметрия символов Шлефли — {4,3} и {3,4} у куба и октаэдра, {3,5} и {5,3} — у икосаэдра и додекаэдра, {3,3} — у тетраэдра и {4,4} — у квадратной мозаики. Именно поэтому родственные мозаики и многогранники изящнейшим образом вписываются друг в друга.

Но вот что настораживает. Два тетраэдра, прошедших один сквозь другой, образуют восьмигранник — вы увидите его в правом верхнем углу гравюры Маурица Эсхера "Звезды"[8]. Эта фигура встретится нам в виде гравюры "Двойной планетоид". Лука Пачоли, первым обнаруживший эту фигуру, назвал ее "продолженным октаэдром", а его великий друг Леонардо да Винчи сделал соответствующий деревянный каркас, перерисовав его затем в их общую книгу "О божественной пропорции". "Octacedron elevatus solidus", то есть "продолженный октаэдр сплошной", — написано там его рукой (24). Иоганн Кеплер переоткрыл эту фигуру сто лет спустя и присвоил ей имя "стелла октангула" — "восьмиугольная звезда". Она встречается и в природе: это так называемый двойной кристалл. Но она же перечеркивает все, что было сказано до сих пор! Мы вынуждены признать "стеллу октангулу" правильным многогранником: ведь все ее грани — правильные треугольники одинакового размера и все углы между ними равны!

Что же это — шестое платоново тело?! Нет, просто удавшаяся провокация. В определении правильного многогранника сознательно — в расчете на кажущуюся очевидность — не было расшифровано слово "выпуклый". А оно означает дополнительное требование: "и все грани которого лежат по одну сторону от плоскости, проходящей через любую из них". Если же отказаться от такого ограничения, то к Платоновым телам, кроме "продолженного октаэдра", придется добавить еще четыре многогранника (их называют телами Кеплера-Пуансо), каждый из которых будет "почти правильным". Все они получаются "озвездыванием" Платонова тела, то есть продлением его граней до пересечения друг с другом, и потому называются звездчатыми. Куб и тетраэдр не порождают новых фигур — грани их, сколько ни продолжай, не пересекаются. Если же продлить все грани октаэдра до пересечения их друг с другом, то получится та же знакомая нам фигура, что возникает при взаимопроникновении двух тетраэдров — "стелла октангула", которую совсем недаром Лука Пачоли называл "продолженным октаэдром". Икосаэдр и додекаэдр дарят миру сразу четыре "почти правильных многогранника. Один из них — малый звездчатый додекаэдр (25), полученный впервые Иоганном Кеплером, вы видите на эсхеровских гравюрах "Силы гравитации" и "Порядок и хаос".

"Я недавно встретил человека, который сказал мне, что не верит даже в существование минус единицы, так как из этого следует существование квадратного корня из нее", — рассказывал Э. Ч. Титчмарш, современный английский историк математики. Подобная же история случилась и с кеплеровским звездчатым додекаэдром.

Открыв этот "колючий" многогранник, Кеплер так и назвал его "еж" и поместил в свою удивительную по фантастичности идей книгу "Мировая гармония", где космогонические и астрономические вопросы решались с помощью соотношений, найденных в музыке и в формах правильных многогранников и многоугольников[9]. Но ученые отказывались считать кеплеровского ежа многогранником.

У этого упрямства была своя логика и своя предыстория. Столетиями математики не признавали за всякого рода звездами права называться многоугольниками из-за того, что стороны их пересекаются. А тут — геометрическое тело, гранями которого служат пятиконечные звезды, да еще вдобавок пересекающиеся! Какой же это многогранник?! Людвиг Шлефли, который был уже настолько свободомыслен — все-таки XIX век! — что не изгонял геометрическое тело из семейства многогранников только за то, что его грани самопересекаются, тем не менее оставался непреклонным, как только речь заходила про малый звездчатый додекаэдр. Довод его был прост и весом: это кеплеровское животное не подчиняется формуле Эйлера! Его колючки образованы двенадцатью гранями, тридцатью ребрами и двенадцатью вершинами, и, следовательно, В+Г-Р вовсе не равняется двойке.

Шлефли был и прав, и не прав. Конечно же, геометрический ежик не настолько уж колюч, чтобы восстать против непогрешимой формулы. Надо только не считать, что он образован двенадцатью пересекающимися звездчатыми гранями, а взглянуть на него как на простое, честное геометрическое тело, составленное из 60 треугольников, имеющее 90 ребер и 32 вершины[10].

Перейти на страницу:

Похожие книги