Будет большой ошибкой думать при этом, что строгость в доказательстве есть враг простоты. Наоборот, многочисленные примеры убеждают нас в том, что строгие методы являются в то же время простейшими и наиболее доступными. Именно стремление к строгости и заставляет искать нас простейшие доказательства. Это же стремление часто прокладывает путь к методам, которые оказываются более плодотворными, чем старые, менее строгие методы. Так, теория алгебраических кривых благодаря более строгим теоретико-функциональным методам и последовательному применению трансцендентных методов значительно упростилась и приобрела большую цельность. Далее, доказательство законности применения четырех элементарных арифметических действий к степенным рядам, а также почленного дифференцирования и интегрирования этих рядов и основанное на этом признание полезности степенных рядов, несомненно, способствовало упрощению всего анализа, в особенности теории исключения и теории дифференциальных уравнений, а также доказательству теорем существования в этих теориях. Но особенно разительным примером, иллюстрирующим мою мысль, является вариационное исчисление. Исследование первой и второй вариаций определённого интеграла приводило к крайне сложным вычислениям, а соответствующие приёмы, применяемые старыми математиками, не были достаточно строгими. Вейерштрасс указал нам путь к новому и вполне надёжному обоснованию вариационного исчисления. На примерах простого и двойного интегралов я вкратце намечу в конце моего доклада, как этот путь немедленно даёт поразительное упрощение вариационного исчисления. Именно, для установления необходимых и достаточных критериев максимума и минимума становится излишним вычисление второй вариации и даже частично отпадает необходимость в утомительных рассуждениях, связанных с первой вариацией. Я уже не говорю о тех преимуществах, которые возникают оттого, что исчезает потребность в рассмотрении тех вариаций, для которых значения производных функций меняются лишь незначительно.

Предъявляя к полному решению проблемы требование строгости в доказательстве, я хотел бы, с другой стороны, опровергнуть мнение о том, что совершенно строгие рассуждения применимы только к понятиям анализа или даже лишь одной арифметики. Такое мнение, поддерживаемое иногда и выдающимися математиками, я считаю совершенно ложным. Такое одностороннее толкование требования строгости быстро приводит к игнорированию всех понятий, возникших из геометрии, механики, физики, приостанавливает приток нового материала из внешнего мира и в конце концов приводит даже к отбрасыванию понятий континуума и иррационального числа. А сколь жизненно важный нерв был бы отрезан от математики, если бы из неё пришлось изъять геометрию и математическую физику! Наоборот, я считаю, что всякий раз, когда математические понятия зарождаются из теории познания, или в геометрии, или в естественнонаучных теориях, перед математикой возникает задача исследовать принципы, лежащие в основе этих понятий, и так обосновать эти понятия с помощью полной и простой системы аксиом, чтобы строгость новых понятий и их применимость к дедукции ни в какой мере не уступали старым арифметическим понятиям.

Новые понятия с необходимостью влекут и новые обозначения. Мы выбираем их таким образом, чтобы они напоминали те явления, которые послужили поводом для образования этих понятий. Так, геометрические фигуры являются образами для напоминания пространственных представлений и в качестве таковых используются всеми математиками. Кто не связывает с двумя неравенствами a > b > c картинку трёх следующих друг за другом точек на прямой, которые геометрически выражают понятие «между»? Кто не пользуется образом вложенных друг в друга отрезков и прямоугольников, если нужно провести полное и строгое доказательство трудной теоремы о непрерывности функции или существования предельной точки? Кто может обойтись без фигуры треугольника, окружности с заданным центром или без тройки взаимно перпендикулярных осей? Или кто мог бы отказаться от образа векторного поля или картины семейства кривых или поверхностей с их огибающей — понятий, играющих столь важную роль в дифференциальной геометрии, в теории дифференциальных уравнений, в основах вариационного исчисления и в других чисто математических областях знаний?

Арифметические знаки — это записанные фигуры, а геометрические фигуры — это нарисованные формулы; никакой математик не мог бы обойтись без этих нарисованных формул, так же как и не мог бы отказаться при счёте от заключения в скобки или их раскрытия или применения других аналитических знаков.

Перейти на страницу:

Похожие книги