Применение геометрических символов в качестве строгого средства доказательства предполагает точное знание и полное владение теми аксиомами, которые лежат в основе теории этих фигур, и поэтому для того, чтобы эти геометрические фигуры можно было включить в общую сокровищницу математических символов, необходимо строгое аксиоматическое исследование их понятийного содержания. Точно так же как при сложении двух чисел нужно подписывать цифры слагаемых в строгом порядке друг под другом, если мы хотим воспользоваться правилами вычислений, т.е. аксиомами арифметики, которые определяют правильные действия с цифрами, так и операции над геометрическими образами определяются теми аксиомами, которые лежат в основе геометрических понятий и связей между ними.
Сходство между геометрическим и арифметическим мышлением проявляется также в том, что в арифметических исследованиях мы так же мало, как и при геометрических рассмотрениях, прослеживаем до конца цепь логических рассуждений, вплоть до аксиом. Напротив, особенно при первом подходе к проблеме, мы и в арифметике, как и в геометрии, сначала пользуемся некоторым мимолётным, бессознательным, не вполне отчётливым комбинированием, опирающимся на доверие к некоторому арифметическому чутью, к действенности арифметических знаков, без чего мы не могли бы продвигаться в арифметике, точно так же как мы не можем продвигаться в геометрии, не опираясь на геометрическое воображение. В качестве примера арифметической теории, оперирующей строгим образом с геометрическими понятиями и знаками, может служить работа Минковского
Сделаем ещё несколько замечаний относительно трудностей, которые могут представлять математические проблемы, и о преодолении этих трудностей.
Если нам не удаётся найти решение математической проблемы, то часто причина этого заключается в том, что мы ещё не овладели достаточно общей точкой зрения, с которой рассматриваемая проблема представляется лишь отдельным звеном в цени родственных проблем. Отыскав эту точку зрения, мы часто не только делаем более доступной для исследования данную проблему, но и овладеваем методом, применимым и к родственным проблемам. Примерами могут служить введённое Коши интегрирование по путям на комплексной плоскости и понятие идеала, введённое Куммером в теории чисел. Этот способ нахождения общих методов наиболее удобный и надежный, ибо если ищут общие методы, не имея в виду какую-нибудь определённую задачу, то эти поиски по большей части напрасны.
При исследовании математических проблем специализация играет, как я полагаю, ещё более важную роль, чем обобщение. Возможно, что в большинстве случаев, когда мы напрасно ищем ответа на вопрос, причина нашей неудачи заключается в том, что ещё не разрешены или полностью не решены более простые и лёгкие проблемы, чем данная. Тогда всё зависит от того, сумеем ли мы найти эти более лёгкие проблемы и осуществить их решение наиболее совершенными средствами, используя понятия, поддающиеся обобщению. Это правило является одним из самых мощных рычагов для преодоления математических трудностей, и мне кажется, что в большинстве случаев этот рычаг и приводят в действие, подчас бессознательно.
Бывает и так, что мы ищем решение при недостаточных предпосылках или идя в неправильном направлении, вследствие чего и не достигаем цели. Тогда возникает задача доказать неразрешимость данной проблемы при данных предположениях и выбранном направлении. Такие доказательства невозможности проводились ещё математиками древности, например, когда они показывали, что отношение гипотенузы равнобедренного прямоугольного треугольника к его катету есть иррациональное число. В новейшей математике вопрос о невозможности решений определённых проблем имеет выдающееся значение; таким образом, мы приходим к тому, что такие старые и трудные проблемы, как доказательство аксиомы о параллельных, как квадратура круга или решение уравнения пятой степени в радикалах, получают, наконец, строгое и вполне удовлетворяющее нас решение, хотя и в другом направлении, чем то, которое сначала предполагалось. Возможно, именно этот удивительный факт, наряду с другими философскими основаниями, создает уверенность (которую разделяет каждый математик, но которую до сих пор никто не подтвердил доказательством) в том, что каждая определённая математическая проблема непременно должна быть доступна точному решению либо в форме действительного ответа на поставленный вопрос, либо в форме доказательства невозможности её решения и вместе с тем неизбежной неудачи всех попыток её решить. Возьмите какую-нибудь определённую нерешённую проблему, скажем вопрос об иррациональности постоянной Эйлера ? или вопрос о существовании бесконечного количества простых чисел вида 2