Оцениваемая при Т = т правая сторона этого неравенства равна нулю, а левая сторона строго положительна. Таким образом, равновесная инвестиция в военную силу возрастает в Т = τ, т. е. ∂ψk,d(τ/∂T > 0, подразумевая, что ожидаемая кланами полезность не максимизируется при эффективном количестве привилегий.
Что касается второго утверждения, ожидаемая кланом к полезность максимизируется при равновесии со взаимным сдерживанием, в котором
Что и требовалось доказать.
Из этой теоремы следует, что неэффективное равновесие со взаимным сдерживанием с большей вероятностью будет существовать, если внешняя угроза слабее. В частности, ожидаемая ценность положения контролирующего клана возрастает с ослаблением внешней угрозы. Это предполагает более широкий диапазон параметров, на котором эффективное равновесие со взаимным сдерживанием характеризуется положительными инвестициями в военную силу, что равноценно наличию положительного числа сторонников (напомним, что инвестиции в военную силу приравнены к вербовке сторонников.)
Формально в пределе, когда θ → 0 (и следовательно s(∙) → 1 и ω(∙) → 1 для ψk= 0), c(1 —δ) →0 и R(T) → 0 равновесное число сторонников должно быть положительным если для k = i или j, ∃ ψk≤λk[I(T) + R(T)] таково что sk,w (ψk, 0) > λk, т. е. существует реальное число сторонников, которые делают вероятность победы клана k, sk,w (∙) выше, чем его доля прибылей λk, когда у другого клана нет сторонников.
Теорема VIII.2
Предположим, что для ∀T ∈ [0, τ] существует равновесие со взаимным сдерживанием (λk, T) с положительным равновесным инвестированием в военную силу. Для обоих кланов количество оптимальных привилегий Т*(θ) является неубывающим в θ.
Доказательство. Любое сокращение в Vk,c () ослабляет ограничения взаимного сдерживания и делает большее количество привилегий оптимальным для обоих кланов. Поскольку θ влияет только на Vk,c (), для доказательства теоремы достаточно показать, что ожидаемая полезность для контролирующего клана убывает в θ. Ожидаемая полезность для контролирующего клана представляет собой функцию ценности для задачи OP, определенной выше. Чтобы увидеть, что она убывает в θ, определим g(∙) = I(T) – ψ – cω(∙)(> 0) и вспомним, что ∂s(∙/∂θ< 0 и ∂ω∙/∂θ> 0. Из этих соотношений и теореме об огибающей следует, что
Что и требовалось доказать.
ПРИЛОЖЕНИЕ VIII.2 СУЩЕСТВОВАНИЕ РАВНОВЕСИЯ СО ВЗАИМНЫМ СДЕРЖИВАНИЕМ
Каковы условия, при которых равновесие со взаимным сдерживанием не существует? Из условия VIII.1 следует, что такое равновесие (λk, Т) не существует, если один клан считает выгодным вступать в конфронтацию, когда другой клан инвестирует все свои ресурсы в укрепление своей военной силы. Иначе говоря, если для k = i или j, ∃ ψk≤ λ k[I(T) + R(T)] такое, что ψ-k=λ-k [I(T)+R(T)], δV k,d(λ k, T, ψk,d)<δV k,w(ψ k,ψ-k)V k,c(T, θ) – (c + ψ k -ψk,d))(1-δ).
В пределе, когда R(T) →0, θ→ 0 (из чего следует, что s()→ 1 и ω()→ 0 и д → 1), равновесие со взаимным сдерживанием (λk, Т) не существует тогда и только тогда, когда для k = i или j, λk < sk,w (•) для некоторого осуществимого ψk и всех осуществимых ψ-k. Таким образом, равновесие со взаимным сдерживанием (λk, Т) для размещения λk не существует, если один клан имеет достаточно сторонников, так что вероятность того, что он победит при конфронтации, выше, чем его доля в доходе.
ПРИЛОЖЕНИЕ VIII.3
СГОВОР И ИГРЫ ПОДЕСТАТА
Игра со сговором
В какой степени клан может ex ante придерживаться обещания вознаградить ex post подеста, который оказывает ему военную помощь? Обозначим как νi (mi, mk; mi) вероятность того, что игрок i (клан или подеста) выиграет войну против j или K, учитывая сравнительную военную силу mj, mk и mi. Вероятность победы i убывает в mj и mк и возрастает в mj. (для простоты изложения я опущу параметр mj в последующих уравнениях). Если игрок участвует в военной конфронтации, ему приходится нести расходы с. Vj – чистая дисконтированная стоимость контроля над Генуей для игрока i. Предположим, что местные кланы выигрывают больше, чем подеста, от контроля над городом, т. е. Vj > Vp, если игрок i – клан[259].
РИС. VIII.2. Игра в сговор
Посмотрим, что произойдет после того, как клан (скажем, клан 1) и подеста вступят в сговор против другого клана и получат контроль над городом (рис. VIII.2). Контролирующему клану придется решать, какое вознаграждение Rp > 0 дать подеста. Как только эта награда объявлена, подеста может либо принять, либо отвергнуть ее и бороться с кланом за контроль над городом. Если он ее принимает, выигрыши составляют V1 – Rp для клана и Rp для подеста. Если он отвергает ее и борется, ожидаемый выигрыш для каждого – вероятность победы минус издержки на получение контроля минус издержки на войну, а именно (1 – vp(m1))V1 – c и vp(m1)Vp – c.