Оба доказательства теоремы Дезарга настолько просты и изящны, что трудно было удержаться от соблазна привести их здесь. Но дело не только в этом. Мы доказали плоскую теорему Дезарга с помощью ее пространственного аналога, т. е. при помощи пространственных построений. Как показал в конце XIX века Д. Гильберт, без выхода из плоскости в пространство вообще невозможно доказать плоскую теорему Дезарга методами проективной геометрии (без привлечения метрических понятий). Следовательно, если задаться целью разрабатывать плоскую проективную геометрию лишь средствами плоскости, не используя пространство, то мы обязаны присоединить теорему Дезарга в качестве новой аксиомы этой плоской геометрии. Затем Гильберт показал, что, исключив "аксиому Дезарга", можно построить новую, так называемую недезар-гову, геометрию на плоскости. Так на протяжении веков раскрывалась чрезвычайно важная роль теоремы Дезарга в проективной геометрии.

К доказательству плоской теоремы Дезарга

Заканчивая краткое знакомство с тремя великими предтечами проективной геометрии, нельзя не отметить и ту глубокую связь между теоремами Паскаля и Дезарга, которая также была раскрыта лишь спустя столетия. Если взять два треугольника, удовлетворяющих условию теоремы Дезарга (такие треугольники называются гомологическими, т. е. сходственными), то всего существует 9 возможных точек пересечения их сторон. Три точки пересечения соответственных сторон, как следует из теоремы Дезарга, лежат на одной прямой. А вот остальные шесть точек пересечения всегда лежат на некотором коническом сечении, т. е. удовлетворяют теореме Паскаля! Заинтересовавшийся читатель может сам построить массу интересных конфигураций с гомологическими треугольниками.

Связь между теоремами Паскаля и Дезарга: из 9 возможных точек пересечения гомологических треугольников ABC и А'В'С' 3 точки пересечения сходственных сторон лежат на одной прямой (точки 1, 2, 3), а остальные 6 — на коническом сечении (гиперболе) — точки 4, 5, 6, 7, 8, 9

Наконец, теорема Дезарга является теоретическим фундаментом перспективных построений, о чем мы еще скажем в конце главы.

И снова вернемся к Понселе. Помимо того что Понселе возродил идею проективной плоскости Дезарга и придал "геометрии положения" самостоятельный статус, он обогатил новую науку и новыми идеями, среди которых, как уже отмечалось, были принципы непрерывности и двойственности.

Принцип непрерывности, позволяющий выводить свойства одной фигуры из свойств другой, Понселе сформулировал так: "Если одна фигура получается из другой непрерывным изменением и столь же обща, как и первая, тогда без дальнейших соображений можно отнести свойства, доказанные для первой фигуры, ко второй". Например, ясно, что противоположные стороны правильного шестиугольника, вписанного в окружность, пересекаются в бесконечно удаленных точках, т. е. лежат на одной бесконечно удаленной прямой. Но это есть доказательство простейшего случая теоремы Паскаля! Тогда согласно принципу непрерывности это утверждение должно быть справедливо и для любого шестиугольника, вписанного в коническое сечение, т. е. мы получаем доказательство общей теоремы Паскаля! Итак, сформулировав и доказав теорему проективной геометрии в простейшем частном случае, Понселе автоматически получал ее обобщение для любой проекции, в которой вид первоначальной конфигурации мог измениться до неузнаваемости.

Несмотря на неточную формулировку, в руках Понселе принцип непрерывности дал новые и верные результаты. Однако на пути применения принципа часто возникали подводные камни. Например, легко видеть, что эллипсы или параболы пересекаются на плоскости в четырех точках, тогда как окружности — только в двух. Между тем как конические сечения эти линии должны обладать одинаковыми свойствами. Вводя на плоскости систему координат и следуя принципу непрерывности, Понселе пришел к выводу, что все окружности помимо двух действительных точек пересечения имеют на плоскости еще две точки пересечения, которые являются не только бесконечно удаленными, но и мнимыми (точнее, комплексно-сопряженными). Так в геометрии появились комплексные числа.

Но если принцип непрерывности достаточно сложен и требует поистине математического полета фантазии, то принцип двойственности прост и прозрачен. Рассмотрим, как действует принцип двойственности в планиметрии.

Перейти на страницу:

Похожие книги