Вспомним основные аксиомы проективной геометрии на плоскости, формулировка которых стала возможной с введением понятия бесконечно удаленных точек (см. с. 285). Принцип двойственности основан на том простом факте, что эти две аксиомы обнаруживают двойственность, т. е. переходят друг в друга, если поменять местами слова точки и прямые (соответственно из соображений литературности языка следует поменять глаголы лежат и проходят, а также предлоги на и через). Если же, говоря о точке, лежащей На прямой, или о прямой, проходящей через точку, ввести более общий термин прямая и точка инцидентны, то последние языковые различия устраняются и аксиомы проективной планиметрии примут наиболее универсальный вид:
А.1. Две различные точки на проективной плоскости определяют прямую, и притом только одну, которой они обе инцидентны.
А.2. Две различные прямые на проективной плоскости определяют точку, и притом только одну, которой они обе инцидентны.
Теперь эти две аксиомы отличаются друг от друга только выделенными словами, т. е. словами точки и прямые, а мы получаем возможность сформулировать сам принцип двойственности: все утверждения проективной планиметрии образуют пары, в которых одно из утверждений пары можно непосредственно получить из другого, взаимозаменив слова точка и прямая.
Понселе не только открыл принцип двойственности, но и применял его до пределов возможного. С легкой руки Понселе стало принято записывать теоремы проективной геометрии в два столбца: в одном столбце пишут доказанную теорему, а в другом — двойственную ей. Разумеется, доказательство двойственной теоремы становится излишним. Таким образом, с открытием Понселе стало возможным удвоить число теорем проективной геометрии, не затратив при этом никакого труда.
В качестве примера двойственных теорем приведем следующую пару. В левом столбце записана известная нам теорема Паскаля, которая сформулирована в удобном для "двойственного перевода" виде. Дополнив наш "словарь двойственных терминов" еще одной парой:
Если А, B, С, D, Е, F — любые точки конического сечения, то три точки пересечения двух противоположных прямых (сторон вписанного шестиугольника) инцидентны одной прямой.
Если А, В, С, D, Е, F — любые прямые (касательные) к коническому сечению, то три прямые, проходящие через две противоположные точки (вершины описанного шестиугольника), инцидентны одной точке.
Каков же был восторг Понселе, когда в теореме, двойственной теореме Паскаля, он увидел теорему, доказанную в 1806 г. его однокашником, студентом Политехнической школы Шарлем Брианшоном (1785-1864)! Однако в отличие от Брианшона Понселе доказывал эту теорему "автоматически". Это открытие утвердило Понселе в могуществе принципа двойственности.
Принцип двойственности: теорема Паскаля (а) и теорема Брианшона (б)
И в заключение вновь перейдем от математики к искусству. Рождению проективной геометрии во многом способствовали геометрические исследования художников Возрождения. А появившись на свет, проективная геометрия стала теоретическим фундаментом искусства перспективы. Важную роль при построении перспективных изображений играет теорема Дезарга. Мы остановимся на двух приложениях этой теоремы к теории перспективы.
Теорема Дезарга и способ архитекторов. Способ-архитекторов, который мы применили в предыдущей главе для построения перспективы интерьера комнаты и перспективы параллелепипеда (см. с. 282), состоит, по существу, в построении двух точек: точки схода изображаемой линии и точки пересечения этой линии с основанием картины. Зная эти две точки, мы можем построить перспективное изображение данной линии. Метод построения точки схода на перспективе был нами разобран на с. 279, доказательство его справедливости очевидно из рисунка на с. 281. А вот найти точку пересечения образа данной линии с основанием картины позволяет нам теорема Дезарга.