Неподвижные точки называются
Сделаем общий вывод: колебание конечной струны представляет собой бесконечную сумму стоячих волн un(х,t), каждая из которых имеет постоянную частоту колебания
пучностей и (k + 1) узлов.
Перейдем теперь к "музыкальному содержанию" решения (10.9) и прежде всего к частотам колебаний. Мы пришли к выводу, что струна колеблется не только всей своей длиной, но одновременно и отдельными частями: половинками, третями, четвертями и т. д. Следовательно, струна издает звук не только основной частоты
Различие тембров музыкальных звуков в основном объясняется составом и интенсивностью обертонов у разных источников звуков. Чем больше у звука обертонов, тем красивее, "богаче" он нам кажется. По тембру, т. е. по составу обертонов, мы отличаем звуки одной и той же высоты и одинаковой громкости, воспроизведенные на скрипке или фортепиано, голосом или на флейте. Разумеется, и сам инструмент способен давать различные тембровые окраски, что прежде всего относится к скрипке.
Три первые стоячие волны (гармоники) колеблющейся струны. Колебания конечной струны U(х,t) представимы в виде суммы бесконечного числа стоячих волн usubn/sub(х,t)
У скрипачей есть особый способ необычного по тембру звукоизвлечения — игра флажолетами. Слегка дотрагиваясь пальцем до струны в узлах стоячих волн, но так, чтобы струна не соприкасалась с грифом, скрипач гасит одни обертоны и оставляет другие. В результате возникает мягкий, немного свистящий звук, напоминающий по тембру звучание старинного Деревянного духового инструмента — флажолета. Например, дотронувшись до струны точно посередине, скрипач гасит все гармоники, имеющие в этой точке пучности, и сохраняет только гармоники, имеющие в этой точке узлы, т. е. четные гармоники. Таким образом, самой низкой частотой станет второй обертон
Но это не будет по тембру звук точно на на октаву выше основного тона
Вот какую огромную роль играют в музыке слагаемые un(х,t) в решении (10.9). Их с полным правом называют звуковой краской музыканта. Но не только музыканты, а и создатели музыкальных инструментов проявляют постоянную заботу об этих слагаемых, от которых зависит тембр звука. Достаточно напомнить об особом "итальянском тембре" скрипок работ знаменитых итальянских мастеров XVI-XVIII веков, представителей нескольких поколений семей Амати, Гварнери, Страдивари.
Из решения (10.9), задавая нужным образом функции f(х) и g(x) и вычисляя интегралы, можно формально получить законы, которые экспериментально обнаружил английский ученый-энциклопедист Томас Юнг (1773 — 1829):
1. Если возбуждать струну в какой-либо точке, то в этой точке возникает пучность и не может образоваться узел.
2. Если затормозить струну в какой-либо точке, то в этой точке возникает узел и не может образоваться пучность.
Из первого закона Юнга следует, что если возбуждать струну, например, точно посередине, то в ней погасятся все гармоники, имеющие в этой точке узел, т. е. все четные обертоны. Значит, мы потеряем половину обертонов и звук станет блеклым. Ясно, что чем дальше от середины мы будем возбуждать струну, тем меньше первых, самых важных гармоник мы потеряем. Тембр звука от этого станет полнее и ярче. Вот почему смычок на скрипке, правая рука на гитаре, молоточки на фортепиано — все они возбуждают струну приблизительно на 1/7-1/10 доли струны от места ее закрепления. Делается это для того, чтобы не потревожить первые обертоны, а значит, не обеднить музыкальный звук. Что касается игры на скрипке флажолетами, то она основана на втором законе Юнга, который является обратным к первому закону.