10. Математика колебания струны: тайное становится явным
Музыка есть таинственная арифметика души; она вычисляет, сама того не сознавая.
Ноябрьским утром 1717 г. на ступенях парижской церкви святого Жана ле Рона был найден младенец. Его взяли на воспитание и в честь святого церкви окрестили Жаном ле Роном. Мальчик рано проявил блестящий ум и жадную любознательность и вскоре стал гордостью всей Франции. Это был Жан ле Рон Д'Аламбер (1717-1783) — выдающийся французский математик, философ, писатель, член Парижской, Петербургской и других академий.
Круг интересов Д'Аламбера был необычайно широк: механика (принцип Д'Аламбера), гидродинамика (парадокс Д'Аламбера), математика (признак сходи мости Д'Аламбера), математическая физика (формула Д'Аламбера), философия теория музыки. Такой широты требовала и oабота вместе с Дени Дидро над созданием наменитой "Энциклопедии наук, искусств и ремесел", да и сам дух эпохи посвещения, когда к знаниям тянулись все, в том числе и "просвещенные деспоты" Фридрих II и Екатерина II. Последуя неоднократно приглашала Д'Аламбера быть воспитателем ее сына — цесаревича Павла, назначая при этом баснословное вознаграждение, но всегда получала деликатный, но твердый отказ.
Колебания струны длины l. Показаны два момента времени t1
В 1747 г. Д'Аламбер опубликовал статью "Исследования по вопросам о кривой, которую образует натянутая струнa, приведенная в колебание", где впервые задача о колебании струны сводилась к решению дифференциального уравнения в частных производных. И хотя эта тема выходит за рамки школьной математики но ведь в знаниях "держать себя в рамках" — значит погубить свою любознательность!), мы рассмотрим простое и поистине красивое уравнение, описывающее колебание струны, так называемое полновое уравнение, с которого началась новая ветвь математики — математическая физика:
Здесь t — время; х — координата струны в положении равновесия; u = u(х, t) — неизвестная функция, выражающая отклонение точки с координатой х в момент времени t от положения равновесия; а2 — коэффициент пропорциональности, характеризующий упругие свойства струны
Волновое уравнение (10.1) есть не что иное, как следствие второго закона Ньютона. Левая часть (10.1) выражает вертикальное ускорение струны в точке х, а правая часть — отнесенную к массе струны силу, вызывающую это ускорение, которая тем больше, чем больше вогнутость струны
Д'Аламбер нашел общее решение уравнения (10.1)
которое содержит две произвольные функции φ(х,t) и ψ(х,t). Через пять лет Даниил Бернулли (1700-1782), математик, механик, физиолог и медик, почетный член Петербургской Академии наук, представитель славного рода Бернулли, который к настоящему времени подарил миру более 100 потомков, добившихся значительных результатов во всех сферах человеческой деятельности, и прежде всего в научной, получил другое общее решение уравнения (10.1)
Сравнивая решения Д'Аламбера (10.2) и Д. Бернулли (10.3), мы, казалось бы, приходим к абсурду: одно и то же уравнение (10.1) имеет совершенно непохожие решения! Но никакого абсурда здесь нет, так уж устроены дифференциальные уравнения. Они обладают бесчисленным множеством решений, что легко видеть из (10.2), где функции φ(x — at) и ψ(x + at) произвольные. При достаточно общих предположениях относительно функций φ и ψ правая часть (10.2) может быть представлена рядом (10.3).