В этом примере качественный смысл есть то, от чего ставится в зависимость прием. В связи с этим мы можем тотчас же выставить общее утверждение, что все затруднение касательно самого принципа было бы устранено, если бы вместо формализма, состоящего в том, что определение дифференциала усматривают лишь в дающей ему это имя задаче, т. е. в различии вообще некоторой функции от ее изменения после того, как ее переменная величина получила некоторое приращение, – если бы вместо этого формализма было указано качественное значение принципа и действие было бы поставлено в зависимость от этого качественного значения. В этом смысле дифференциал от xn оказывается вполне исчерпанным первым членом ряда, получающегося путем разложения выражения (x + dx)n. Что прочие члены не принимаются во внимание, проистекает, таким образом, не из их относительной малости; здесь не предполагается никакой такой неточности, погрешности или ошибки, которая бы выравнивалась и исправлялась другой ошибкой, – взгляд, исходя преимущественно из которого Карно оправдывает обычный метод исчисления бесконечно малых. Так как дело идет не о некоторой сумме, а о некотором отношении, то дифференциал оказывается вполне найденным посредством первого члена; там же, где есть нужда в дальнейших членах, в дифференциалах высших порядков, их нахождение состоит не в продолжении ряда, как суммы, а в повторении одного и того же отношения, которое единственно имеют в виду и которое, стало быть, завершено уже в первом члене. Потребность в форме некоторого ряда, в суммировании этого ряда и все, что связано с этим, должны в таком случае быть совершенно отделены от указанного интереса к отношению.
Разъяснения, даваемые Карно относительно метода бесконечных величин, представляют собою наиболее очищенное и ясное изложение того, что нам встретилось в вышеуказанных представлениях. Но при переходе к самим действиям у него более или менее появляются обычные представления о бесконечной малости отбрасываемых членов по сравнению с другими. Он оправдывает метод скорее тем, что результаты оказываются правильными, и полезностью введения неполных уравнений, как он их называет (т. е. таких уравнений, в которых совершается такое арифметически неправильное отбрасывание), для упрощения и сокращения исчисления, чем самой природой вещи.
Лагранж, как известно, снова возвратился к первоначальному методу Ньютона, к методу рядов, дабы быть свободным от трудностей, которые влечет за собою представление о бесконечно малом, равно как и метод первых и последних отношений и пределов. Относительно его исчисления функций, прочие преимущества которого в отношении точности, абстрактности и всеобщности достаточно известны, мы должны отметить как касающееся занимающего нас вопроса лишь то, что оно покоится на той основной теореме, что разность, не превращаясь в нуль, может быть принята столь малой, чтобы каждый член ряда превосходил по своей величине сумму всех следующих за ним членов. При этом методе также начинают с категорий приращения и разности (по сравнению с первоначальной функцией) той функции, переменная величина которой получает приращение, что и вызывает появление скучного ряда; равно как в дальнейшем члены ряда, которые должны быть отброшены, принимаются в соображение лишь с той стороны, что они составляют некоторую сумму, и основанием, почему они отбрасываются, полагается относительность их определенного количества. Отбрасывание, следовательно, и здесь не сводится в общем виде к той точке зрения, которая отчасти встречается в некоторых приложениях, в которых, как мы упомянули раньше, члены ряда должны иметь определенное качественное значение и оставляются без внимания не потому, что они незначительны по величине, а потому, что они незначительны по качеству; отчасти же само отбрасывание отпадает в той существенной точке зрения, которая определенно выступает относительно так называемых дифференциальных коэффициентов лишь в так называемом приложении дифференциального исчисления у Лагранжа, что мы разъясним подробнее в следующем примечании.