Что, собственно, хотим мы сказать, говоря о выражении тех же самых законов другими уравнениями? Предположим, что перед нами два мира
Действительно, эта качественная природа явлений затрагивает лишь наши чувства, а мы условились встать на внепсихологическую точку зрения, следовательно, условились абстрагироваться от данных наших чувств и обращать внимание только на взаимоотношения явлений. Так именно и поступает физик, когда он, например, заменяет газы, данные нам в опыте и вызывающие у нас ощущения давления и теплоты, газами кинетической теории, являющимися просто движущимися материальными точками, или когда он заменяет свет, получаемый в опыте и вызывающий у нас цветовые ощущения, колебаниями эфирной среды.
Достаточно рассмотреть какой-нибудь простой случай, например астрономические явления и закон Ньютона. Мы наблюдаем не координаты небесных светил, а только их взаимные расстояния. Поэтому естественным выражением законов их движения будут дифференциальные уравнения, связывающие эти расстояния со временем. Но расстояние между двумя точками в пространстве представляет собой известную простую функцию координат этих двух точек. Преобразуем наши дифференциальные уравнения, подставив в них эту функцию вместо всех расстояний. Мы получим тогда эти уравнения в их обычной форме, где фигурируют сами координаты светил.
Но мы могли бы заменить эти расстояния другими функциями и получили бы тогда другие формы этих уравнений. Все эти формы были бы одинаково правомерны с интересующей нас точки зрения, так как в них соблюден «параллелизм» между явлениями. Представим себе звезды расположенными в четырехмерном пространстве, так что положение каждой из них определяется уже не тремя, а четырьмя координатами. Заменим далее в наших уравнениях величину, представлявшую для нас до сих пор расстояние между двумя светилами, какой-нибудь функцией восьми координат этих двух светил. Нет никакой необходимости, чтобы эта функция была той самой, которая представляет расстояние между двумя точками в четырехмерном пространстве; она может быть совершенно произвольной, так как это нисколько не нарушает «параллелизма».
Мы получим, таким образом, некоторую форму наших уравнений, в которых будут фигурировать координаты светил в четырехмерном пространстве. Это будет новое выражение астрономических законов, основанное на гипотезе четырехмерного пространства, и выражение это будет вполне правомерно, потому что условие «параллелизма» соблюдено. Ясно только, что полученные таким образом уравнения будут гораздо менее простыми, чем наши обычные уравнения.
То же самое, без сомнения, будет и с другими законами физики. Нет ли какого-нибудь общего основания тому факту, что во всех разделах физики гипотеза трех измерений дает уравнениям наипростейшую форму? И имеет ли это основание что-нибудь общее с развитыми выше соображениями, в силу которых живые существа вынуждены верить в три измерения или поступать так, как если бы они верили в это под угрозой ослабления в борьбе за существование?
Здесь необходимо небольшое отступление. Вернемся на минуту к нашему старому обычному пространству. Мы говорим, что оно относительно, и это значит, что законы физики одни и те же во всех частях этого пространства или, на математическом языке, что дифференциальные уравнения, выражающие эти законы, не зависят от выбора осей координат.
Если рассматривать совершенно изолированную систему, то это не имеет никакого смысла: ведь наблюдать координаты точек этой системы невозможно, можно наблюдать только их взаимные расстояния. Наблюдение не может сообщить нам о том, зависят ли свойства этой системы от ее абсолютного положения в пространстве, так как это положение недоступно наблюдению.