При вращении рычага каждая из этих точек получает два движения: естественное, перпендикулярное плечу рычага (обозначения aA и bB), и приобретенное, направленное к центру O, с которым все точки рычага связаны нерасторжимой связью (обозначения aA’ и bB’). Поскольку при повороте все точки рычага описывают дуги окружностей, то делается вывод, что отношение между естественным и приобретенным движением не остается постоянным. Почему так происходит — не объясняется. Зато дается указание на следующий факт: точка a получает большее приобретенное движение, чем точка b. В самом деле, пусть естественные движения этих точек будут равными (aA и bC на чертеже), тогда их приобретенные движения будут соответственно равны aA’ и CC’. Но очевидно, что aA’ > CC’, то есть расположенная дальше от центра O точка b получает меньшее приобретенное движение при таком же естественном. Чтобы пропорция между естественным и приобретенным движением оставалась одинаковой (опять же не объясняется, почему это условие является обязательным) для всех точек рычага оказывается необходимым, чтобы точка b двигалась быстрее точки a, и только положение Oa’b’ обеспечит сохранение пропорциональности движений. При этом легко показать геометрически, что величина движений точки b так относятся к величинам движений точки a, как расстояние Ob к расстоянию Oa. В современном виде мы можем записать полученное соотношение как
Современному читателю, знакомому хотя бы с начатками школьной физики, будет чрезвычайно трудно прочесть данные рассуждения без вопроса: зачем доказывать всё таким сложным и сомнительным способом? Пусть даже результат и является абсолютно верным, но ход рассуждений едва ли кажется убедительным. Если быть честным, то приведенное доказательство вообще ничего не доказывает, а являет собой просто-напросто геометрическое пустословие. Более того, греки умели вычислять длину окружности через радиус, поэтому они могли без особого труда составить приведенную выше пропорцию, исходя из самых элементарных кинематических соображений. Но был выбран иной путь. Конечно, нужно иметь в виду что, сегодня люди узнают о легких способах анализа вращательного движения от учителя физики, однако во времена античности такого источника информации не существовало: привычную для нас механику еще не придумали, а эллины лишь пытались делать робкие шаги в этом направлении. Сведение всей механики к круговому движению образовывало некую общую совокупность всех подходов, требующую при рассмотрении задачи равновесия привлекать достаточно сложные соображения. Фактически, греки пытались применить к проблеме сразу все свои знания о механике, даже если условия задачи этого не требовали. Поскольку Аристотель говорил о естественном и приобретенном движении, то их необходимо отыскивать во всех рассматриваемых процессах.
Так или иначе, но получив требуемое соотношение, автор «Механических проблем» приступает к обоснованию закона рычага, а именно — объясняет, каким образом получается возможным с помощью рычага поднимать малым усилием большие тяжести. Здесь используется один из основных законов Аристотеля о приобретенном движении, который мы можем переформулировать следующим образом: при действии одинаковых сил на различные тела произведения их веса (массы) на их скорость дадут постоянную величину. Теперь рассмотрим весы, на плечах которых расположены грузы массой
Поскольку выше уже было показано, что для кругового движения скорость пропорциональна радиусу, то последняя формула может быть преобразована в соотношение
что дает нам абсолютно верный закон рычага. Из полученного соотношения следует, что для равновесия необходимо, чтобы отношения грузов и соответствующих плеч находилось в обратной зависимости. Здесь мы видим фактически уже закон равенства моментов, ведь греки не отличали массу и вес, но последний шаг — формулирование понятия «момента силы» — так и не был сделан.