29. Следовательно, о какой бы степени ни шла речь, в одной части возникает алгебраическое выражение, а в другой — геометрическая величина, каждая из которых естественно распадается на три члена: [первый —] алгебраическое или флюксионное выражение, в которое не входит ни выражение приращения абсциссы, ни какой-либо ее степени; второй, в который входит выражение самого приращения; и третий, включающий выражение степеней приращения. Геометрическая величина, или же вся увеличившаяся площадь, тоже состоит из трех частей или членов, первый из которых — заданная площадь, второй — прямоугольник под ординатой и приращением абсциссы и третий — площадь, ограниченная кривыми линиями. И, сравнивая аналогичные или соответственные члены в каждой части, обнаруживаем, что первый член алгебраического выражения есть выражение заданной площади, в то время как второй член алгебраического выражения дает значение прямоугольника, или второго члена геометрической величины, а третий, содержащий степени приращения, выражает площадь, ограниченную кривыми, или третий член геометрической величины. Вероятно, те, у кого есть досуг и кто проявляет любопытство в отношении таких вопросов, могут дальше развить эти начатки мыслей и применить их для каких-либо благих целей. Я же использую их для того, чтобы показать, что данный анализ можно признать действительным не только в отношении приращений и дифференциалов, но (как было замечено ранее) также и в отношении конечных величин, если даже они так велики, как было выше замечено.

386

30. Следовательно, в целом, как представляется, мы можем совершенно определенно заявить, что заключение не может быть правильным, если для его получения какая-либо величина объявляется приближающейся к нулю или игнорируется, за исключением тех случаев, когда одна ошибка компеисируотся другой; или же, во-вторых, когда в одной и той же части уравнения взаимно уничтожаются равные величины, имеющие противоположные знаки, так что величина, которую мы имеем в виду отбросить, прежде уже уничтожается; или же, наконец, когда из каждой части уравнения вычитаются равные величины. и в силу этого избавляться от каких-либо величин в соответствии с принятыми принципами флюксий, или дифференциалов, — значит противоречить как истинной геометрии, так и истинной логике. Когда приращения исчезают, скорости тоже приближаются к нулю. Заявляют, что скорости, или флюксии, суть primo и ultimo [12] как приращения зарождающиеся и исчезающие. Но тогда возьмите соотношение (ratio) исчезающих величин, оно равно соотношению флюксий. В силу атого оно также отвечает всем целям. Зачем же тогда вводятся флюксии? Разве не для того, чтобы избежать применения величин бесконечно малых или, скорее, затушевать (palliate) его? Но у нас нет иных понятий для понимания и измерения различных степеней скорости, кроме пространства и времени, а когда отрезки времени даны — только пространства. У нас даже нет понятия о скорости, отделенной от пространства и времени. Поэтому, когда говорится, что какая-либо точка движется в данные отрезки времени, у нас нет понятия о большей или меньшей скорости или о соотношении скоростей, а только о более длинных или коротких отрезках прямой и о соотношении между такими отрезками, образованными за равные промежутки времени.

31. Точка может служить пределом линии. Линия может служить пределом поверхности. Мгновение может завершить отрезок времени. Но как мы можем представить себе скорость при помощи таких пределов? Она необходимо подразумевает как время, так и пространство и не можег быть представлена без них. А если скорости зарождающихся и приближающихся к нулю величин, т. е. абстрагированных от времени и пространства, не могут быть поняты, то как мы можем понять и доказать их соотношения? Или возьмем их rationes primae и ultimae [13]. Рассмотрение пропорции или отношения (ratio) вещей подразумевает, что у таких вещей есть определенное значение, что такие их значения могут быть измерены, а их отношения друг к другу — найдены. Но поскольку скорость измеряется только через время и пространственное [протяжение], соотношение скоростей может быть составлено только из прямой пропорции расстояний (spaces) и обратной пропорции времен; не следует ли из этого, что говорить об исследовании, получении и рассмотрении соотношений скоростей, в отрыве от времени и пространства, — значит говорить нечто невразумительное?

387

Перейти на страницу:

Похожие книги