32. Но вы можете сказать, что при использовании и применении флюксий люди не перенапрягают свои способности с целью абсолютно точно понять концепцию вышеупомянутых скоростей, приращений, бесконечно малых величин или каких-либо иных подобных идей столь деликатного (nice), тонкого и мимолетного (evanescent) характера. и в силу этого вы, может быть, будете утверждать, что задачи можно решать без упомянутых допущений, которые не доступны пониманию, и что, следовательно, учение о флюксиях, по крайней мере в своей практической части, свободно от всех таких трудностей. Я отвечу, что, если при использовании и применении этого метода упомянутые трудные и неясные моменты не принимаются во внимание явно, они тем не менее предполагаются. Они являются фундаментом, на который опираются современные математики, принципами, на основе которых они действуют, решая задачи и открывая теоремы. С методом флюксий дело обстоит так же, как со всеми другими методами, которые предполагают наличие соответствующих принципов и основаны на них, хотя правила, вытекающие из методов, могут применяться людьми, которые и не обращают внимания на принципы и, может быть, их даже не знают. В силу этого подобным же образом моряк может на практике применять определенные правила, основанные на геометрии и астрономии, принципов которых он не понимает, и так же любой обыкновенный человек может решать различные числовые примеры, используя общедоступные правила и действия арифметики, которые он выполняет и применяет, не зная их обоснования. Более того, нельзя отрицать, что вы можете применять правила метода флюксий; вы можете сравнивать и сводить частные случаи к общим формам; при помощи его вы можете производить действия, высчитывать и решать задачи, не только действительно не обращая внимания на основы этого метода и принципы, от которых он зависит и из которых он выведен, и фактически не зная их, но даже вообще никогда не рассматривая и не понимая их.

388

33. Но тогда следует не забывать, что в таком случае, хотя вы можете сойти за художника, вычислителя или аналитика, вас по справедливости нельзя было бы считать человеком науки, основывающим свои мнения на строгом доказательстве. Никто не должен так же, только в силу того, что он хорошо разбирается в таком туманном анализе, воображать, что его умственные способности более развиты, чем у тех, кто упражнял их каким-либо иным образом и в отношении других предметов, и тем более не ставить себя на роль судьи и оракула в отношении вопросов, которые никак не связаны с теми образами, символами или знаками, которыми он так ловко и умело распоряжается, являясь специалистом в атом деле, и от которых другие вопросы совершенно не зависят. Вас, например, искусного вычислителя и аналитика, возможно, в силу вышеизложенного, могут не считать искусным в анатомии, или vice versa [14]: человек, искусно рассекающий трупы, тем не менее может быть не сведущим в вашем искусстве вычисления; а вы оба вместе, несмотря на то что необыкновенно искусны каждый в своем соответствующем деле, в равной мере не компетентны решать вопросы, относящиеся к логике, метафизике, этике, религии. и так оно и будет, даже если признать, что вы понимаете свои собственные принципы и можете их доказывать.

34. Если скажут, что флюксии можно объяснить или выразить при помощи отрезков прямых, им пропорциональных; что поскольку эти отрезки можно отчетливо воспринять, познать и на них можно основываться, то их можно подставить вместо флюксий, а их отношения, или пропорции, рассматривать как пропорции флюксий; что благодаря такому приему теория флюксий становится ясной и полезной, — на это я отвечу: для того чтобы получить эти конечные прямые, пропорциональные флюксиям, необходимо предпринять определенные неясные шаги, которые представить себе невозможно; и пусть эти конечные прямые сами по себе воспринимаются очень ясно, тем не менее необходимо признать, что ход ваших рассуждений не ясен, а ваш метод не научен. Например, положим, что АВ — абсцисса, ВС — ордината, a VCH — касательная к кривой АС; Вb или СЕ — приращение абсциссы, Еc — приращение ординаты, которая, будучи продолжена, пересекает VH в точке Т, а Сс — приращение кривой. Если прямую Сс продолжить до К, образуется три небольших треугольника — прямолинейный СЕс, треугольник со смешанными прямо- и криволинейными сторонами СЕс и прямолинейный треугольник СЕТ. Очевидно, что эти три треугольника отличаются друг от друга: прямолинейный

389

Перейти на страницу:

Похожие книги