Странность, впрочем, сохраняется не совсем. Существуют очень медленные распады странных частиц — распады, происходящие за большое время — порядка 10-10 сек[36], в которых странность не сохраняется. Их называют «слабые» распады. Например, K0-мезон распадается на пару π-мезонов (+ и -) со временем жизни 10-10 сек. Именно так на самом деле впервые были замечены K-частицы. Обратите внимание, что распадная реакция

не сохраняет странности, так что «быстро», путем сильного взаимодействия, она идти не может. Может она идти только через слабый распадный процесс.

Далее, K0-мезон также распадается таким же путем (на π+ и π-) и тоже с таким же самым временем жизни:

Здесь опять идет слабый распад, потому что он не сохраняет странности. Существует принцип, по которому для всякой реакции всегда найдется соответствующая реакция, в которой «материя» заменяется «антиматерией» и наоборот. Раз K0 — это античастица К0, она обязана распадаться на античастицы π+ и π-, но античастица π+ есть π-. (Или, если вам угодно, наоборот. Оказывается, что для π-мезонов неважно, кого из них назовут «материей», их эта материя совсем не интересует.) Итак, как следствие слабых распадов К0- и K0-мезоны могут превращаться в одинаковые конечные продукты. Если «видеть» их по их распадам (как в пузырьковой камере), то выглядят они, как совершенно одинаковые частицы. Отличаются только их сильные взаимодействия.

Теперь наконец-то мы доросли до того, чтобы описать работу Гелл-Манна и Пайса. Во-первых, они отметили, что раз К0 и K0 оба могут превращаться в два π-мезонов, то должна также существовать некоторая амплитуда того, что К0 может превратиться в К0, и такая же амплитуда того, что K0 превратится в К0. Реакцию можно записать так, как это делают химики:

(9.43)

Из существования таких реакций следует, что есть амплитуда, которую мы обозначим через -i/<K0|W|K0>, превращения К0 в K0, обусловленная тем самым слабым взаимодействием, с которым связан распад на два π-мезона. Ясно, что есть и амплитуда обратного процесса <K0|W|K0>. Так как материя и антиматерия ведут себя одинаково, то эти две амплитуды численно равны между собой; мы обозначим их через А:

(9.44)

И вот, сказали Гелл-Манн и Пайс, здесь возникает интересная ситуация. То, что люди назвали двумя разными состояниями мира (К0 и K0), на самом деле следует рассматривать как одну систему с двумя состояниями, потому что имеется амплитуда перехода из одного состояния в другое. Для полноты рассуждений следовало бы, конечно, рассмотреть не два состояния, а больше, потому что существуют еще состояния 2π и т. д.; но поскольку наши физики интересовались главным образом связью К0 с K0, то они не захотели усложнять положения и представили его приближенно в виде системы с двумя состояниями. Другие состояния были учтены в той мере, в какой их влияние неявно скажется на амплитудах (9.44).

В соответствии с этим Гелл-Манн и Пайс анализировали нейтральную частицу как систему с двумя состояниями. Начали они с того, что выбрали состояния |К0> и |K0> за базисные состояния. (С этого места весь рассказ становится очень похожим на то, что было для молекулы аммиака.) Всякое состояние |ψ> нейтрального K-мезона можно тогда описать, задав амплитуды того, что оно окажется в одном из базисных состояний. Обозначим эти амплитуды

(9.45)

Следующим шагом мы должны написать уравнение Гамильтона для такой системы с двумя состояниями. Если бы К0 и K0 не были бы связаны между собой, то уравнения выглядели бы просто

(9.46)

Однако есть еще амплитуда <K0|W|K0> перехода К0 в K0; поэтому в правую часть первого уравнения надо еще добавить слагаемое

Аналогичное слагаемое АС+ надо добавить и в уравнение, определяющее скорость изменения С-. Но это еще не все! Если уж мы учитываем двухпионный эффект, то надо учесть и то, что существует еще дополнительная амплитуда превращения К0 в самого себя по цепочке

Эта дополнительная амплитуда (обозначим ее <K0|W|K0>) в точности равна амплитуде <K0|W|K0>, так как амплитуды перехода в пару π-мезонов или от пары π-мезонов в К0 или K0 одни и те же.

Если угодно, можно показать это и подробнее. Прежде всего напишем[37]

и

Симметрия между материей и антиматерией требует, чтобы

а также

Отсюда <K0|W|K0>=<K0|W|K0> а также <K0|W|K0>=<K0|W|K0> о чем мы уже говорили выше.

Итак, у нас есть две дополнительные амплитуды <K0|W|K0> и <K0|W|K0>, обе равные А, которые надо вставить в уравнения Гамильтона. Первая приводит к слагаемому АС+ в правой части уравнения для dC+/dt, а вторая — к слагаемому АС- в правой части уравнения для dC-/dt. Рассуждая именно так, Гелл-Манн и Пайс пришли к заключению, что уравнения Гамильтона для системы K0—K0 должны иметь вид

(9.47)

Перейти на страницу:

Поиск

Все книги серии Фейнмановские лекции по физике

Похожие книги