Что же все это значит? Возвратимся назад и подумаем об опыте, показанном на фиг. 9.5. Там π--мезон образовал Λ0-частицу и K0-мезон, который летит без оглядки сквозь водород камеры. Когда он движется, существует ничтожный, но постоянный шанс, что он столкнется с ядром водорода. Раньше мы думали, что сохранение странности предохранит K-мезон от образования Λ0-частицы в таком взаимодействии. Теперь, однако, мы понимаем, что это не так. Потому что, хотя наш К-мезон вначале является К0-мезоном, неспособным к рождению Λ0-частицы, он не остается им навечно. Через мгновение появляется некоторая амплитуда того, что он перейдет в состояние —K0. Значит, следует ожидать, что иногда мы увидим Λ0-частицу, образованную вдоль следа K-мезона. Вероятность такого происшествия дается амплитудой С-, которую можно [решая (9.50)] связать с С1 и С2. Связь эта такова:
(9.55)
И когда K-частица движется, вероятность того, что она будет «действовать как» —K0, равна |С-|2, т. е.
(9.56)
Сложный и поразительный результат!
Это и есть замечательное предсказание Гелл-Манна и Пайса: когда возникает K0-мезон, то шанс, что он превратится в —K0-мезон, продемонстрировав это возможностью создания Λ0-частицы, меняется со временем по закону (9.56). Это предсказание последовало только из чистейших логических рассуждений и из основных принципов квантовой механики без знания внутренних механизмов K-частицы. И поскольку никто не знает ничего об этом внутреннем механизме, то дальше этого Гелл-Манн и Пайс не смогли продвинуться. Им не удалось дать теоретических значений α и β. И никто до сегодняшнего дня не смог это сделать. Им было по силам оценить значение β из экспериментально наблюдаемой скорости распада на два π-мезона (2β=1,1·1010 сек-1), но про α они ничего не смогли сказать.
Мы изобразили функцию (9.56) для двух значений α на фиг. 9.6.
Фиг. 9.6. Функция (9.56). а — для α=8πβ, б — для а=2πβ (при 2β=1010сек-1) время t отложено в 10-10сек
Видно, что форма ее сильно зависит от отношения α и β. Наблюдать —K0-мезон сперва нет никакой вероятности, но затем она появляется. Если значение α велико, вероятность сильно осциллирует; если оно мало, осцилляции невелики или вовсе отсутствуют, вероятность просто плавно возрастает до 1/4.
Как правило, K-мезоны движутся с постоянной скоростью, близкой к скорости света. Тогда кривые фиг. 9.6 также представляют вероятность наблюдения —K0-мезона вдоль следа с типичными расстояниями порядка нескольких сантиметров. Теперь вы видите, отчего это предсказание так удивительно своеобразно. Вы создаете отдельную частицу, и она не просто распадается, а проделывает нечто совсем иное. Временами она распадается, а порой превращается в частицу другого сорта. Характеристическая вероятность этого эффекта по мере ее движения меняется очень странно. Ничего другого, похожего на это, в природе нет. И это удивительнейшее предсказание было сделано только на основе рассуждений об интерференции амплитуд.
Если и существует какое-то место, где есть шанс проверить главные принципы квантовой механики самым прямым образом — бывает ли суперпозиция амплитуд или не бывает, — то оно именно здесь. Несмотря на то что этот эффект был предсказан уже несколько лет тому назад, до сих пор достаточно ясного опытного определения еще не было. Имеются некоторые грубые результаты, указывающие, что значение α не равно нулю и что эффект действительно наблюдается: они свидетельствуют, что α по порядку величины равно β. И это все, что мы знаем из эксперимента. Было бы замечательно, если бы удалось точно проверить и посмотреть, действительно ли работает принцип суперпозиции в этом таинственном мире странных частиц — с неизвестными поводами для распадов и неизвестным поводом существования странности[38].