Теперь надо сделать поправку к сказанному в прежних главах: к тому, что две амплитуды, такие, как <K0|W|—K0> и <—K0|W|K0>, выражающие обратные друг к другу процессы, всегда комплексно сопряжены. Это было бы верно, если бы мы говорили о частицах, которые не распадаются. Но если частицы могут распадаться, а поэтому «пропадать», то амплитуды не обязательно комплексно сопряжены. Значит, равенство (9.44) не означает, что наши амплитуды суть действительные числа. На самом деле они суть комплексные числа. Поэтому коэффициент А комплексный и его нельзя просто включить в энергию Е0.
Часто, возясь со спинами электронов и тому подобными вещами, наши герои знали: такие уравнения означают, что имеется другая пара базисных состояний с особенно простым поведением, которые также пригодны для представления системы K-частиц. Они рассуждали так: «Возьмем теперь сумму и разность этих двух уравнений. Будем отсчитывать все энергии от Е0 и возьмем для энергии и времени такие единицы, при которых ℏ=1». (Так всегда поступают современные теоретики. Это не меняет, конечно, физики, но уравнения выглядят проще.) В результате они получили
(9.48)
откуда ясно, что комбинации амплитуд С++С- и С+-С- действуют друг от друга независимо (и отвечают стационарным состояниям, которые мы раньше изучали). Они заключили, что удобнее было бы для K-частиц употреблять другое представление. Они определили два состояния:
(9.49)
и сказали, что вместо того, чтобы думать о K0- и —K0-мезонах, с равным успехом можно рассуждать на языке двух «частиц» (т. е. «состояний») К1 и К2. (Они, конечно, соответствуют состояниям, которые мы обычно называли |I> и |II>. Мы не пользуемся нашими старыми обозначениями, потому что хотим следовать обозначениям самих авторов, тем, которые вы встретите на физических семинарах.)
Но Гелл-Манн и Пайс проделывали все это не для того, чтобы давать частицам новые названия; во всем этом имеется еще некоторая весьма странная физика. Пусть C1 и С2 суть амплитуды того, что некоторое состояние |ψ> окажется либо K1-, либо K2-мезоном:
Из уравнений (9.49)
(9.50)
Тогда (9.48) превращается в
(9.51)
Их решения имеют вид
(9.52)
где С1(0) и С2(0) — амплитуды при t=0.
Эти уравнения говорят, что если нейтральный K-мезон при t=0 находится в состоянии |К1> [так что С1(0)=1 и С2(0)=0], то амплитуды в момент t таковы:
Вспоминая, что А — комплексное число, удобно положить
(так как мнимая часть 2А оказывается отрицательной, мы пишем ее как минус iβ). После такой подстановки С1(t) принимает вид
(9.53)
Вероятность обнаружить в момент t частицу К1 равна квадрату модуля этой амплитуды, т. е. e-2βt. А из (9.52) следует, что вероятность обнаружить в любой момент состояние K2 равна нулю. Это значит, что если вы создаете К-мезон в состоянии |К1>, то вероятность найти его в том же состоянии со временем экспоненциально падает, но вы никогда не увидите его в состоянии |К2>. Куда же он девается? Он распадается на два π-мезона со средним временем жизни τ=1/2β, экспериментально равным 10-10 сек. Мы предусмотрели это, говоря, что А комплексное.
С другой стороны, (9.52) утверждают, что если создать K-мезон целиком в состоянии К2, он останется в нем навсегда. На самом-то деле это не так. На опыте замечено, что он распадается на три π-мезона, но в 600 раз медленнее, чем при описанном нами двухпионном распаде. Значит, имеются какие-то другие малые члены, которыми мы в нашем приближении пренебрегли. Но до тех пор, пока мы рассматриваем только двухпионные распады, К2 остается «навсегда».
Рассказ о Гелл-Манне и Пайсе близится к концу. Дальше они посмотрели, что будет, когда K-мезон образуется вместе с Λ0-частицей в сильном взаимодействии. Раз его странность должна быть +1, он обязан возникать в состоянии К0. Значит, при t=0 он не является ни К1, ни К2, а их смесью. Начальные условия таковы:
Но это означает [из (9.50)], что
а из (9.52) следует, что
(9.54)
Теперь вспомним, что K1 и К2 суть линейные комбинации К0 и —K0. В (9.54) амплитуды были выбраны так, что при t=0 части, из которых состоит —K0, взаимно уничтожаются за счет интерференции, оставляя только состояние К0. Но состояние |К1> со временем меняется, а состояние |К2> — нет. После t=0 интерференция С1 и С2 приведет к конечным амплитудам и для К0, и для —K0.