- Разумеется. Однако не забудь о том, что я собираюсь получить при помощи такого деления на кружки вовсе не приближенный объем конуса, а совершенно точный! Ведь мы действительно убедились с тобой, что в процентном отношении к искомому объему разница может быть сделана сколь угодно малой, если мы будем уменьшать толщину цилиндриков. Убедились мы также и в том, что если в каждом слагаемом мы сделаем ошибку меньше тысячной процента, то при вычислении всей суммы общая ошибка не может превысить того же самого процентного отношения. Не так ли? Тебе все здесь ясно?

- Как будто так, - отвечал Илюша. - То есть этот множитель-ошибка при суммировании просто выйдет за скобку?

- 318 -

- Ну разумеется! А теперь сообрази-ка, что же получится в пределе. Разницу между истинным объемом конуса и суммой можно сделать меньше 0,001, или меньше 0,000001 процента, то есть одной миллионной, или меньше 0,0000000000000000001, то есть одной десятиквинтиллионной процента.

- Постой-ка! - воскликнул Илюша. - А нельзя ли изображать и десятичные дроби через отрицательные степени "десяти"?

- Разумеется, можно. 101 будет 10; 10-1 - единица, деленная на 10, то есть 0,1, ибо,

10-1 = 10n / 10n+1 = 1 / 10 = 0.1

а следовательно, 10-2 будет 0,01, и так далее.

- А тогда, - сказал Илюша, - эти проценты я запишу так: вместо 0,000001-10-6, а вместо 0,0000000000000000001 - 10-19.

Но если делать так, то, значит, можно и здесь воспользоваться самыми громадными делителями единицы, вплоть до того невероятного архимедова числа в сто шестьдесят биллионов километров длиной, о котором мы говорили в Схолии Десятой.

Слушай, Радикс! Скажи мне, пожалуйста: может быть,Архимед именно это и имел в виду, когда сочинял "Псаммит"? ..

- Весьма вероятно! И очень хорошо, что ты сам теперь это понял.

- Но если, - продолжал далее мальчик, - точность суммы неограниченно возрастает за счет увеличения числа цилиндров и утончения их, то ясно, что в пределе я и получу совершенно точно искомую величину!

- Так, - отвечал Коникос. - Вот выходит, что "чем больше ошибок ты сделаешь, тем лучше окажется твой результат", ибо чем больше ошибок, тем каждая из них меньше. А отсюда ясно, что ты действительно имеешь возможность при вычислении объема конуса разбивать его на тончайшие слои и считать каждый слой цилиндром, пренебрегая теми крохотными колечками (они у нас останутся, если из каждого цилиндрика вычесть соответственный усеченный конусик), которые представляют собой бесконечно малые более высокого порядка.

А это уже величины такой малости, что по сравнению с ними бесконечно малые первого порядка, о которых мы до сих пор говорили, суть величины бесконечно большие.

- А все-таки есть одна вещь, которую мне очень трудно усвоить! - вздохнул Илюша. - Как это так можно чем-нибудь пренебрегать в математике?

Длина окружности не может быть больше периметра описанного многоугольника и меньше периметра вписанного. Однако если бесконечно удваивать число сторон многоугольников, то оба периметра будут приближаться к длине окружности, как к пределу.

- 319 -

- Чем можно пренебрегать, а чем нельзя, мы узнаем первоначально, разумеется, из опыта. Замечательный физик и мыслитель девятнадцатого века Больцман утверждал, рассуждая о вопросах, близких к тем, о которых мы сейчас говорим, что не логика решает в конце концов, правильна ли данная система размышлений или неправильна. Решает этот вопрос дело, то есть наша человеческая повседневная деятельность. "То, что ведет нас к верному делу, - говорил Больцман, - то и есть истина". И если бы мы с помощью данных рассуждений не могли достигнуть некоторых неоспоримых практических результатов, то никогда и не могли бы установить, как же, наконец, следует рассуждать - так или иначе. Если я путем такого процесса бесконечного уменьшения слагаемых кружков получаю правильное решение, то, следовательно, и способ мой правилен.

Длина окружности не может быть больше периметра описанного многоугольника и меньше перимерта вписанного. Однако если бесконечно удваивать число сторон многоугольников, то оба перимера будут приближаться к длине окружности, как к переделу.

Перейти на страницу:

Похожие книги