Задействованная здесь структура весьма сложна, хотя и естественна с точки зрения теории групп. Уравнение решаемо в радикалах в том, и только том случае, если его группа Галуа имеет серию особых подгрупп (именуемых «нормальными»), такую, что конечная подгруппа содержит всего одну перестановку и число перестановок в каждой последующей подгруппе равно числу перестановок в предыдущей, деленному на некоторое простое число. Идея доказательства состоит в том, что нужны только простые радикалы – к примеру, корень шестой степени есть квадратный корень из кубического корня, при этом числа 2 и 3 – простые, – и каждый такой радикал снижает размер соответствующей группы делением числа ее членов на соответствующее простое число.

Группа Галуа для обобщенного уравнения четвертой степени, к примеру, содержит все 24 возможные перестановки решений. Эта группа имеет нисходящую цепочку нормальных подгрупп с размерами

24 12 4 2 1

и

24/12 = 2 – простое,

12/4 = 3 – простое,

4/2 = 2 – простое,

2/1 = 2 – простое.

Следовательно, уравнение четвертого порядка решить можно, и в формуле для решения мы ожидаем встретить квадратные (следует из двоек) и кубические (следует из троек) корни, но ничего больше.

Группы для квадратных и кубических уравнений меньше по размеру и опять же имеют нисходящие цепочки нормальных подгрупп, размеры которых изменяются делением на простые числа. А что с уравнением пятой степени? У него пять решений, что дает нам 120 перестановок. Единственная цепочка нормальных подгрупп имеет размеры

120 60 1.

Поскольку 60/1 = 60 – не простое число, решений в радикалах у такого уравнения быть не может.

На самом деле Галуа не стал записывать доказательства того, что уравнение пятой степени не может быть решено в радикалах. Это уже доказал Абель, и Галуа знал об этом. Вместо этого он разработал обобщенную теорему, характеризующую все уравнения простых степеней, которые могут быть решены в радикалах. Показать, что обобщенное уравнение пятой степени не входит в число этих уравнений, – пустяк для Галуа настолько тривиальный, что он об этом даже не упоминает.

* * *

Значение Галуа для математики определяется не столько теоремами, сколько его методом. Его группа перестановок – сегодня мы называем ее группой Галуа – состоит из всех перестановок корней, сохраняющих алгебраические отношения между ними. В более общем плане, если задан некоторый математический объект, мы можем рассматривать все преобразования – может быть, перестановки, может быть, нечто более геометрическое, к примеру жесткое перемещение, – которые сохраняют его структуру. И совокупность таких преобразований называется группой симметрии объекта. Понятие «группа» здесь определяется одним конкретным свойством групп перестановок Галуа, которое он подчеркивал, но не развил в более общую концепцию. Суть в том, что последовательность двух любых симметричных преобразований всегда дает симметричное преобразование.

В качестве простого геометрического примера возьмем квадрат на плоскости и будем преобразовывать его при помощи различных жестких перемещений. Вы можете сдвигать этот квадрат, вращать его, можете даже перевернуть. При каких движениях из этого набора квадрат остается совершенно неизменным с виду? Сдвиг не годится; центр квадрата при этом перемещается в другое место. Вращать можно, но только на один или несколько прямых углов. Любой другой угол приведет к наклону квадрата, которого прежде не было. Наконец, квадрат можно перевернуть относительно любой из четырех осей: двух диагоналей и прямых, проходящих через центры противоположных сторон. Добавив еще тривиальное преобразование типа «ничего не трогать», получим ровно восемь симметрий.

Проделайте эту же процедуру с правильным пятиугольником – и получите 10 симметрий; для правильного шестиугольника их будет 12 и т. д. Круг имеет бесконечное множество симметрий: поворот на любой угол и переворот относительно любого диаметра. У разных фигур может быть разное число симметрий. Мало того, в игру вступают и более тонкие свойства, чем просто число симметрий, – следует учитывать не только то, сколько имеется симметрий, но и то, как они сочетаются.

Перейти на страницу:

Похожие книги