Это предположение, окажись оно верным, имело бы множество значительных следствий. В частности, из него следует, что различные приближенные формулы с участием простых чисел на самом деле более точны, чем можно доказать в настоящее время. Вообще, диапазон тем, на которые повлияло бы доказательство гипотезы Римана, необъятен. Однако пока для этой гипотезы нет ни доказательства, ни опровержения. Есть кое-какие «экспериментальные» данные: в 1914 г. Годфри Харолд Харди доказал, что на критической линии действительно лежит бесконечное число нулей. В 2001–2005 гг. программа Себастьяна Веденивски ZetaGrid подтвердила, что первые 100 млрд нулей лежат на критической линии. Однако в этой области теории чисел подобный результат не может быть до конца убедительным, поскольку многие правдоподобные, но неверные гипотезы впервые нарушаются очень-очень далеко, на невообразимо гигантских числах. Гипотеза Римана – часть Задачи № 8 в знаменитом Гильбертовом списке 23 великих нерешенных математических задач (глава 19); она же является одной из так называемых Задач тысячелетия, отобранных Институтом Клэя в 2000 г.; объявлено, что за верное решение любой из этих задач будет выплачена премия в один миллион долларов. Вообще, гипотеза Римана – сильный претендент на звание крупнейшей нерешенной задачи во всей математике.

Риман доказал свою точную формулу для числа простых чисел при помощи, помимо прочего, анализа Фурье. Эту формулу можно рассматривать как свидетельство того, что преобразование Фурье переводит множество нулей дзета-функции в множество простых степеней и некоторое количество элементарных множителей. То есть нули дзета-функции управляют нерегулярностями простых чисел. Маркуса дю Сотоя назвать свою книгу «Музыка простых чисел» вдохновила поразительная аналогия. Анализ Фурье помогает разложить сложную звуковую волну на базовые синусоидальные компоненты. Аналогично великолепная симфония простых чисел раскладывается на отдельные «ноты», исполняемые последовательно каждым нулем дзета-функции. Громкость каждой ноты определяется величиной действительной части соответствующего нуля. Таким образом, гипотеза Римана говорит нам, что все нули звучат одинаково громко.

Озарения Римана, позволившие ему глубоко заглянуть в царство дзета-функции, дают ему право именоваться музыкантом простых чисел.

<p>16. Кардинал бесконечных множеств</p><p>Георг Кантор</p>Георг Фердинанд Людвиг Филипп Кантор Родился: Санкт-Петербург, Россия, 3 марта [19 февраля по старому стилю] 1845 г. Умер: Галле, Германия, 6 января 1918 г.

Понятие бесконечности, того, что может продолжаться вечно, без остановки, завораживала человека испокон веков. Философы, разумеется, повеселились в этой теме вволю. На протяжении последних нескольких столетий математики, в частности, широко использовали бесконечность; точнее говоря, они использовали множество различных интерпретаций бесконечности во множестве различных контекстов. Бесконечность – это не просто очень большое число. Строго говоря, это вообще не число, потому что бесконечность больше любого конкретного числа. Если бы бесконечность была числом, это означало бы, что она должна быть больше самой себя. Аристотель рассматривал бесконечность как процесс, продолжающийся неопределенно долго: до какого бы числа вы ни добрались, вы всегда сможете найти большее число. Философы называют это потенциальной бесконечностью.

Некоторые индийские религии, и среди них джайнизм, буквально очарованы большими числами. Согласно джайнскому математическому тексту «Сурья-праджняпти», некий индийский математик-визионер заявил около 400 г. до н. э., что существует множество размеров бесконечности. Звучит как мистическая чепуха, не правда ли? Если бесконечность – это самое большое, что только может существовать, то как одна бесконечность может быть больше другой? Но ближе к концу XIX в. немецкий математик Георг Кантор разработал Mengenlehre – теорию множеств – и воспользовался ею, чтобы объявить: бесконечность может быть актуальной, а не просто Аристотелевым процессом потенциальности, и вследствие этого одни бесконечности могут быть больше, чем другие.

Перейти на страницу:

Похожие книги