В течение двух недель я старался доказать, что невозможна никакая функция, которая была бы подобна тем, которым я впоследствии дал название фуксовых функций; в то время я был еще весьма далек от того, что мне было нужно. Каждый день я усаживался за свой рабочий стол, проводил за ним один-два часа, перебирал большое число комбинаций и не приходил ни к какому результату. Но однажды вечером я выпил, вопреки своему обыкновению, чашку черного кофе; я не мог заснуть; идеи возникали во множестве; мне казалось, что я чувствую, как они сталкиваются между собой, пока, наконец, две из них, как бы сцепившись друг с другом, не образовали устойчивое соединение. Наутро я установил существование класса функций Фукса, а именно тех, которые получаются из гипергеометрического ряда; мне оставалось лишь сформулировать результаты, что отняло у меня всего несколько часов[25].
Затем он описывает в некоторых подробностях собственный опыт, указывая с самого начала, что слушателям (или читателям) не обязательно понимать, что означают технические термины в его рассказе. Можно просто считать их заместителями неких продвинутых математических понятий.
Я захотел затем представить эти функции в виде частного двух рядов; это была вполне сознательная и обдуманная мысль; мною руководила аналогия с эллиптическими функциями. Я задал себе вопрос: «Каковы должны быть свойства этих рядов, если они существуют?» – и я пришел без труда к образованию рядов, названных мною тета-фуксовыми функциями. В эту пору я покинул Кан, где я тогда жил, чтобы принять участие в геологической экскурсии, организованной Горным институтом. Среди дорожных перипетий я забыл о своей математической работе. По прибытии в Кутанс мы взяли омнибус, чтобы поехать в какое-то место. И вот в тот момент, когда я заносил ногу на ступеньку омнибуса, мне пришла в голову идея – хотя мои предыдущие мысли, кажется, не имели с нею ничего общего, – что те преобразования, которыми я воспользовался для определения фуксовых функций, тождественны преобразованиям неевклидовой геометрии. Я не проверил тогда этой идеи; для этого у меня не было времени, так как, едва усевшись в омнибус, я возобновил начатый разговор, тем не менее я сразу почувствовал полную уверенность. Возвратясь в Кан, я для очистки совести сделал проверку; идея оказалась верной[26].
Рассказ продолжают еще два случая внезапного озарения.
Размышляя задним числом над этим и другими открытиями, Пуанкаре выделяет три фазы математического открытия: подготовка, инкубационный период и просветление. То есть: проведи сознательную работу, чтобы погрузиться в задачу, дойти до предела и остановись; подожди, пока подсознание все это переработает; а потом у тебя в голове вспыхнет маленькая лампочка и наступит момент озарения.
Анализ Пуанкаре, содержащийся в его лекциях, статьях и книгах, до сих пор остается одним из лучших источников информации о работе великого математического ума.