Анри Пуанкаре родился в Нанси (Франция). Его отец Леон был профессором медицины в Университете Нанси, мать звали Эжени (урожденная Лануа). Его двоюродный брат Раймон Пуанкаре стал премьер-министром, а во время Первой мировой войны был президентом Французской Республики. В раннем возрасте Анри переболел дифтерией, и, пока не поправился, его дома обучала мать. Затем он отправился в лицей, где провел 11 лет. Анри был первым по всем без исключения предметам, а в математике – просто неподражаем. Учитель называл его «монстром математики», и национальные конкурсы Анри тоже выигрывал. У мальчика была великолепная память; он мог представить себе любую сложную трехмерную фигуру, что компенсировало ему в какой-то степени зрение – настолько слабое, что во время урока он едва видел классную доску, не говоря уже о том, что было на ней написано.

В 1870 г., когда Франко-прусская война была в самом разгаре, юный Пуанкаре служил вместе с отцом в медицинской части. В 1871 г. закончилась война, в 1873 г. Анри поступил в Париже в Политехническую школу, которую окончил в 1875 г. Затем он был принят в Горную школу (École des Mines), где изучал горное дело и вновь математику. В 1879 г. он получил диплом горного инженера. Тот год был богат событиями. Пуанкаре стал горным инспектором Горного корпуса по области Везуль; он, в частности, проводил официальное расследование несчастного случая в Маньи, когда погибло 18 шахтеров. Кроме того, Пуанкаре продолжал под руководством Эрмита работать над докторской диссертацией; он занимался уравнениями в конечных разностях – аналогом дифференциальных уравнений, в которых время изменяется не непрерывно, а дискретными шагами. Он распознал потенциал уравнений, описывающих движение многих тел под действием гравитации, к примеру Солнечной системы, и предвидел будущее развитие в этой области; важность этих исследований многократно возросла, когда компьютеры стали достаточно мощными, чтобы взять на себя громадное число необходимых расчетов.

После получения докторской степени Пуанкаре получил место младшего преподавателя математики в Университете Кана, где встретил свою будущую жену Луизу Пулен д’Андеси. Они поженились в 1881 г. и родили четверых детей – трех девочек и мальчика. К 1881 г. Пуанкаре успел получить куда более престижную работу в Университете Парижа, где за короткое время вырос в одного из ведущих математиков своего времени. Пуанкаре обладал прекрасной интуицией, и лучшие идеи, как правило, приходили к нему в те моменты, когда он думал о чем-то другом, – вспомните хотя бы историю с омнибусом. Он написал несколько научно-популярных бестселлеров: «Наука и гипотеза» (1901 г.), «Ценность науки» (1905 г.), «Наука и метод» (1908 г.). Безусловно, Пуанкаре стоял выше большинства других математиков того времени во многих областях, включая теорию комплексных функций, дифференциальные уравнения, неевклидову геометрию, топологию – которую он, по существу, основал, – и в применении математики в таких разных областях, как электричество, упругость, оптика, термодинамика, теория относительности, квантовая теория, небесная механика и космология.

* * *

Топология, если вы помните, – это «геометрия резинового листа». Евклидова геометрия строится вокруг свойств, которые сохраняются при жестких перемещениях, таких как длины, углы и площади. Топология отбрасывает все это и ищет свойства, которые, напротив, сохраняются при непрерывных преобразованиях, таких как сгибание, растягивание, сжатие и закручивание. К таким свойствам относятся связность (один кусок или два), наличие узлов и число отверстий (одно или больше). Предмет изучения здесь может показаться туманным, но свойства непрерывности фундаментальны – возможно, даже более фундаментальны, чем свойства симметрии. В XX в. топология наряду с алгеброй и анализом стала одним из трех китов теоретической математики.

В том, что так произошло, большая заслуга Пуанкаре, который перешел от резиновых листов к, если так можно выразиться, резиновым пространствам. Метафора листа – двумерная концепция. Если игнорировать все окружающее пространство – как видел его Гаусс, – то для определения точки на листе или, более формально, на поверхности, достаточно двух чисел. Классические топологи, и среди них ученик Гаусса Иоганн Листинг, сумели достаточно подробно разобраться в топологии поверхностей. В частности, они их проклассифицировали, то есть расписали все возможные формы поверхностей, воспользовавшись для этого хитроумным методом конструирования поверхности из плоского многоугольника (и его внутренней части).

Если попарно склеить противоположные стороны квадрата, получится тор. Но результат можно представить себе и исследовать, используя только начальный квадрат и правила склеивания и ничего на самом деле не сгибая.
Перейти на страницу:

Похожие книги