Рассказ получился бы достаточно драматичным, даже если бы мы остановились на этом месте. Однако спустя некоторое время произошло удивительное событие: спектральная теория в гильбертовом пространстве оказалась подходящим математическим аппаратом для новой квантовой физики, начало которой было положено Гейзенбергом и Шрёдингером в 1925 году. Это последнее развитие привело к пересмотру всего предмета в целом при помощи более тонких средств (Дж. фон Нейман, А. Винтнер, М. Г. Стоун, К. Фридрихс). Так как Дж. фон Нейман был сотрудником Гильберта в период окончания той эпохи, когда его интересы делились между квантовой физикой и основаниями, историческая связь с собственными достижениями Гильберта не прекращается даже в этой последней фазе развития. Обзор того, что стало с теорией абстрактных пространств и линейных операторов в наше время, лежит вне рамок настоящей статьи.

Картина «аналитического периода» Гильберта будет неполной, если мы не упомянем второй мотив, вариационное исчисление, который пересёкся с его доминирующим интересом — интегральными уравнениями. «Теорема о независимости», которой он окончил свой парижский обзор математических проблем (1900), внесла важный вклад в формальный аппарат этого исчисления. Но гораздо более важную роль сыграл его смелый и решительный подход к проблемам функциональных максимумов и минимумов. Весь хорошо отработанный аппарат вариационного исчисления здесь был сознательно отброшен в сторону. Вместо него он предложил строить минимизирующую функцию как предел последовательности функций, для которых значение рассматриваемого интеграла стремится к своему минимуму. Классический пример даёт интеграл Дирихле в двумерной области

D [u] =

? ?

{(

?u?x

)

2

+

(

?u?y

)

2

}

dx dy.

G

Допустимыми здесь являются все функции u с непрерывными производными, удовлетворяющие заданным граничным условиям. Пусть d — нижняя грань значений D[u] для допустимых u; тогда можно найти последовательность допустимых функций un такую, что D[un] d при n ?. Нельзя ожидать, что сама последовательность un будет сходиться, однако можно попытаться её изменить с помощью подходящего процесса интегрального сглаживания, чтобы она начала сходиться. Так как предельная функция должна быть гармонической, а значение таких функций для любой точки P совпадает со средним значением её на любой окружности K с центром в P, то естественнее всего заменить un(P) на её среднее значение в K. При этом мы надеемся, что это среднее значение будет стремиться к числу u(P), которое не зависит от выбранной окружности, а его зависимость от точки P даст решение проблемы минимума. Кроме интегрирования Гильберт использует до перехода к пределу некоторый процесс выделения подходящей подпоследовательности из un. Благодаря простому неравенству

v

D [umun]

?

v

D [um] – d

+

v

D [un] – d

,

открытому С. Зарембой, последнего можно и не делать. Метод Гильберта ещё лучше приспособлен для задач, в которых граница области не имеет столь большого значения, как в краевой задаче. После небольшого видоизменения его можно применять к случаю точечных особенностей, и таким образом Гильберт решает фундаментальную проблему для потоков на римановых поверхностях. Это позволяет получить необходимую основу для подхода самого Римана к теории абелевых интегралов, а также показывает, что таким же образом можно получить фундаментальные теоремы Пуанкаре и Кёбе об униформизации. Насколько бы далеко мы продвинулись в теории чисел, если бы располагали столь же мощными методами для конструкции абелевых и произвольных расширений Галуа полей алгебраических чисел, какими оказались трансцендентные методы Римана—Гильберта в применении к аналогичным проблемам в полях алгебраических функций! Широкие их приложения к теории конформных отображений и минимальных поверхностей были открыты работами Рихарда Куранта — человека, много лет являвшегося главным сотрудником Гильберта во всех математических делах в Гёттингене 31. Также значительным, но не таким непосредственным является влияние идей Гильберта на целое направление в современном развитии вариационного исчисления; в Европе среди многих других можно упомянуть имена Каратеодори, Лебега, Тонелли, в Америке цепочка тянется от О. Больца до совсем недавней работы М. Морса.

<p>ФИЗИКА</p>
Перейти на страницу:

Похожие книги