Рассказ получился бы достаточно драматичным, даже если бы мы остановились на этом месте. Однако спустя некоторое время произошло удивительное событие: спектральная теория в гильбертовом пространстве оказалась подходящим математическим аппаратом для новой квантовой физики, начало которой было положено Гейзенбергом и Шрёдингером в 1925 году. Это последнее развитие привело к пересмотру всего предмета в целом при помощи более тонких средств (Дж. фон Нейман, А. Винтнер, М. Г. Стоун, К. Фридрихс). Так как Дж. фон Нейман был сотрудником Гильберта в период окончания той эпохи, когда его интересы делились между квантовой физикой и основаниями, историческая связь с собственными достижениями Гильберта не прекращается даже в этой последней фазе развития. Обзор того, что стало с теорией абстрактных пространств и линейных операторов в наше время, лежит вне рамок настоящей статьи.
Картина «аналитического периода» Гильберта будет неполной, если мы не упомянем второй мотив,
? ? | {( | ? | ) | 2 | + | ( | ? | ) | 2 | } | ||
Допустимыми здесь являются все функции
v | ? | v | + | v | , |
открытому С. Зарембой, последнего можно и не делать. Метод Гильберта ещё лучше приспособлен для задач, в которых граница области не имеет столь большого значения, как в краевой задаче. После небольшого видоизменения его можно применять к случаю точечных особенностей, и таким образом Гильберт решает фундаментальную проблему для потоков на римановых поверхностях. Это позволяет получить необходимую основу для подхода самого Римана к теории абелевых интегралов, а также показывает, что таким же образом можно получить фундаментальные теоремы Пуанкаре и Кёбе об униформизации. Насколько бы далеко мы продвинулись в теории чисел, если бы располагали столь же мощными методами для конструкции абелевых и произвольных расширений Галуа полей алгебраических чисел, какими оказались трансцендентные методы Римана—Гильберта в применении к аналогичным проблемам в полях алгебраических функций! Широкие их приложения к теории конформных отображений и минимальных поверхностей были открыты работами Рихарда Куранта — человека, много лет являвшегося главным сотрудником Гильберта во всех математических делах в Гёттингене 31. Также значительным, но не таким непосредственным является влияние идей Гильберта на целое направление в современном развитии вариационного исчисления; в Европе среди многих других можно упомянуть имена Каратеодори, Лебега, Тонелли, в Америке цепочка тянется от О. Больца до совсем недавней работы М. Морса.
ФИЗИКА