Итак, к началу XVIII века органы, настроенные Андреасом Веркмейстером, зазвучали в равномерно-темперированном строе. Преимущества нового строя были очевидны. Это был замкнутый энгармонический строй, состоящий из интервалов, вполне приемлемых для музыкального слуха и в гармоническом, и в мелодическом исполнении. В новом строе стали совершенно безболезненными переходы из тональности в тональность (модуляции), "волки" навсегда покинули орган. Простота нового строя также была его неоспоримым преимуществом.

Конечно, и в век Просвещения новое не всеми воспринималось восторженно. Выдающийся немецкий композитор Георг Фридрих Гендель (1685-1759) не принял новшества. Отказ от совершенных консонансов возмущал его. К счастью, равномерная темперация нашла сторонника в лице сверстника Генделя, великого немецкого композитора и органиста Иоганна Себастьяна Баха (1685-1750). В простоте и математической строгости равномерной темперации Бах гениально предвидел подлинный путь развития музыки. Предвидения Баха сбылись: равномерная темперация сегодня лежит в основе всей мировой музыки.

Иоганн Себастьян Бах (1685- 1750). Последний прижизненный портрет И. С. Баха работы неизвестного художника

Для демонстрации возможностей нового строя Бах написал свое бессмертное произведение "Хорошо темперированный клавир", основной целью которого было ознакомить играющих на клавире со всеми двадцатью четырьмя (12-мажорными и 12-минорными) тональностями хроматической гаммы нового "хорошо согласованного" строя. Бах хотел показать равноценность всех тональностей при новой системе настройки клавира и вместе с тем выявить характерную окраску каждой тональности. На титульном листе "Хорошо темперированного клавира" значилось: "Для пользы и употребления жадного до учения музыкального юношества, как и для особого времяпрепровождения тех, кто уже преуспел в этом учении, составлено и изготовлено Иоганном Себастьяном Бахом — в настоящее время великокняжеским Ангальт-Кетенским капельмейстером и директором камерной музыки. В году 1722".

Разумеется, Бах слишком скромно оценивал свое произведение. Цикл прелюдий и фуг Баха занимает особое место в мире музыки. Это не просто один из бессмертных шедевров мировой музыки. Это настоящая энциклопедия полифонического искусства, его альфа и омега, настольная книга каждого мыслящего музыканта. Не случайно Бетховен называл "Хорошо темперированный клавир" своей "музыкальной библией", которую он изучал с раннего детства до глубокой старости. Да и сам Бах всю жизнь обращался к своему детищу и через 24 года написал вторую часть "Хорошо темперированного клавира", также состоящую из 24 прелюдий и фуг.

И все-таки является ли 12-звуковая равномерная темперация "абсолютной истиной" в музыке? Разумеется, нет! Спор Баха и Генделя продолжается. Музыкантов с особо тонким слухом раздражают "тупые" консонансы темперированного строя. Чайковский после отдыха на природе болезненно ощущал недостатки темперированной музыки, и прежде всего собственной. Известно, как мучился Скрябин, не находя в рояле чистых интервалов. В последние годы жизни Скрябин пытался сконструировать рояль с дополнительными тонами, но неожиданная смерть не позволила осуществить задуманное. Наш соотечественник и современник, крупнейший пианист XX века Святослав Рихтер признается, что он физически старается преодолеть темперацию рояля при помощи звукоизвлечения, придавая диезным и бемольным звукам, когда это нужно, различную тембровую окраску. Поиски новых равномерных темперации продолжаются. Разработаны 24-, 48- и 53-зву-ковые равномерные темперации. На каждую из них специально написана музыка и сконструированы музыкальные инструменты. Но все они практического распространения не получили. Возможно, новые темперации ждут еще нового Веркмейстера и нового Баха...

На этом можно было бы поставить точку. Но мы поставили многоточие, ибо у вдумчивого читателя должен возникнуть еще один вопрос: почему все-таки октава разделена именно на 12 частей? Это вопрос из области математики, и ответ на него содержится в решении задачи, которую мы сформулируем так.

Требуется разделить интервал октавы 1≤f≤2 на n геометрически равных частей 1 = f0≤f1≤f2≤...≤fn = 2, так, чтобы k-я точка деления приходилась на главный консонанс октавы — квинту, т. е. fk = 3/2 (0k = 2k/n, то мы приходим к уравнению

(9.3)

Но левая часть уравнения (9.3) есть число четное при любых n и k, тогда как правая — число нечетное. Таким образом, мы пришли к противоречию, которое доказывает, что уравнение (9.3) в целых числах решений не имеет. Одновременно мы можем сделать важный вывод: шкала равномерно-темперированного строя никогда точно не пройдет через квинту.

Будем искать в целых числах приближенные решения уравнения (9.3). Логарифмируя, представим это уравнение в виде

(9.4)

и, как говорят математики, найдем рациональные приближения иррационального числа 0,58505... Такие задачи в математике решаются с помощью цепных дробей, т. е. дробей вида

(9.5)

Перейти на страницу:

Похожие книги